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A non-linear model of the motion of an automobile-type transport robot (TR) with absolutely rigid wheels, a steering device
and actuators based on DC motors, is considered. Such a model for TR motion is a non-holonomic electromechanical system
and, if the dynamics of the actuators and the steering device (forces of elasticity and attenuation in its elements) is ignored,
corresponds to the model of automobile motion devised by Lineikin [1]. Non-linear canonical transformations of the state and
control space coordinates are constructed which reduce the initial equations of motion of the TR to a simpler canonical form,
convenient for the analysis and synthesis of control systems for the TR. These transformations are used to find the conditions
for the controllability of the TR as a controlled object. Algorithms are given for constructing programmed controls and programmed
motions of the TR. Stabilizing control laws are synthesized that make the programmed motions of the TR asymptotically stable
and guarantee that the transients will have preassigned properties. © 2003 Elsevier Ltd. All rights reserved.

1. EQUATIONS OF THE MATHEMATICAL MODEL OF
THE MOTION OF A TRANSPORT ROBOT. STATEMENT
OF THE PROBLEM

1. We consider a model for the motion of an automobile-type transport robot (TR), which, as an
electromechanical system, consists of several interlinked components: a four-wheeled chassis with a
body, front and rear bridges, absolutely rigid wheels, a steering device whose elements admit of elastic
deformation, and electrical actuators based on independently activated DC motors whose mechanisms
for transmitting the motion (the transmissions) have absolutely rigid elements.

The body of the TR consists of the body of the rear bridge and a longitudinal beam rigidly linking
the body of the rear bridge with the fixed part of a mechanism for turning the front bridge.

We shall assume that the TR is dynamically symmetric, that is, the centre of mass C of the body of
the TR lies on the longitudinal axis BA passing through the midpoints A and B of the axles 4,44, and
B1BB; of the front and rear wheels, respectively (see Fig. 1).
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It will be assumed that the motion of each wheel can be considered as pure rolling without slipping,
both longitudinally, in the plane of the wheels, and transversely, perpendicular to the plane of the wheels.
Under these assumptions v4 and vp, the velocity vectors of the midpoints 4 and B of the front and back
axles, are parallel at each instant of time to the planes of the corresponding wheels; that is, v, the velocity
vector of the point B, will always point along the longitudinal axis BA and the velocity vector v4 of the
point 4 will always be at an angle 8 to that axis.

When investigating the special features of plane-parallet motion of this TR model, we shall consider
a simplified scheme of the model of TR motion of automobile type, devised by Lineikin [1] (see also
[2, pp. 22-32] and later refined by Lobas [3, pp. 98-109].

Under the aforementioned simplifying assumptions, previously established relations ([3], p. 105,
Eqgs (5.24); p. 107, Eqs (5.34); p. 109, Eqs (5.41)) enable us to present the equations of motion of this
TR model, relative to some fixed Cartesian system of coordinates (CSC) = = Oxyz, in the form

X, = Y (lctgBeosy, — L,siny,)
Y. = W.(lctgBsiny, + ,cosy,)
Ve
6

Ay(9) +by(8, ¥, 0) = Dy(0)Q, (L.1)

.. R R
J 0+ k0 +0,M,,0, = kyil

P mi'ai

La,‘iai"’R 1 -+ke,~('].,- = U

al“ai

i=12

ai’

where

2 2
Ay(9) = Jo+mlctg® 6, _ ”‘10:'1(9)”.',,'=1,2
e, 6,

2
ml ctgl . - .
. - Y0+ F (9, . )ctg0
by(8,y,,0) = sin’@ (1.2)

. .3
- ky26 - klee - kfzze

Dy(8) = diag(’ﬁ‘rg—e, ) Jo = J+mb +21,L,m,

x., ¥, are the coordinates, and x,, y. are the velocities of the centre of mass M of the TR in the fixed
CSC Oxy, v, is the course angle — the angle of inclination (turn) of the longitudinal axis B4 of the RT
to the Ox axis, 0 is the angle of rotation of the front wheels, measures from the direction of the
longitudinal axis B4 of the TR, it is assumed that a leftward rotation of the wheels corresponds to positive
values of the angles y, and 6, a dot over a symbol denotes the operation of differentiation with respect
to time £; [ = I; + L, is the length of the base of the body, the segments BA = [, and BC = [, are the
distances from the centre of mass C of the TR to its front and back axles, m = m; + m, is the mass of
the TR, where m is the mass of the body including the masses of the wheels, ©, = J; + myl3 and J,
are the moments of inertia of the body together with the wheels about a vertical axis through the points
B and C, respectively, that is, J; is the central moment of inertia of the body, m, and ©, are the mass
and moment of inertia of the front axle with the steering device together with the front wheels about
a vertical axis through the point 4, ©® = ©, + ©, + m,I? is the moment of inertia of the TR about a
vertical axis through the point B,J =J; + O, + m,I? is the moment of inertia of the TR about a vertical
axis Cz through the point C, Ay is a symmetric positive-definite matrix of order 2 x 2, by is a two-
dimensional vector function, Dy is a diagonal 2 x 2 matrix-valued function

ot . Ko(8) = diag(lctg®i, 7, iyy) (1.3)

= %o(®)| "

2] 2]
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o, is the angle of rotation of the shaft of the ith DC motor

—~1 .
Vo=V . =(v), =r(g+4,)/2 = i,04r =
B e = (Vo) r(g, +4;) p1%1 (1.4)

= lotg®y, = ppW. = KpW, (pp =¥y = lctgh)

is the velocity of the point B(xp, 3, )z, equal to the projection V, of the velocity vector v, of the centre
of mass of C(l, 0)s of the TR onto the axis Bx' (directed along the longitudinal axis B4 of the TR
toward the front part of the body of the TR) of the moving CCS £' = Bx'y’, it is assumed that if
Vg > 0 forward motion of the TR takes place in a direction that coincides with that of the Bx' axis, but
if Vg < 0, the direction is opposed to that of the Bx’ axis, r and ¢, and g, are the radius and angular
velocities of the wheels of the rear bridge of the TR chassis, respectively, pg = / ctg8 is the radius of
curvature kz = pj' = (Ictg0)™' of the trajectory of motion of the TR at the point B, i,; and m,; are the
coefficients of transmission and efficiency of the ith transmission reductor

F(8,¥,) = ko lctgi, + K, (lctg0,)’ + F g =

= Fe(Vg) = kp Vg +kpaVa+ Fog

]

is the force of resistance to forward motion of the TR, ks = 0 and ks, = 0 are the attenuation
coefficients, Fq = 0is a constant, Qg = ~k;,,0 —ks,,0— k;,0° is a generalized force allowing for the forces
of elasticity and attenuation acting on the elements of the steering device [3, p. 109], k,, and k2, k2
are the stiffness of the steering device and attenuation coefficients, Q,,; and Q,, are the components
of the two-dimensional vector

Qu = Col(Qul’ QuZ) (15)

of the generalized (rotating) torques Q,, and Q,, conveyed from the motor shafts through the
transmission to the wheels of the front axis and to the steering device, respectively,

P, =0l (1.6)
is the force acting along the longitudinal axis BA of the TR in the direction of Bx’ axis.
1, = col(l,), I ;) (17

is the two-dimensional vector of the currents /,; and I, in the armature circuits of the DC motors, J,;
is the moment of inertia of the rotor of the ith motor, k¢, is the coefficient of the moment of resistance
of viscous friction M; = —k;;0; on the shaft of the ith motor, ,,,, is the coefficient of the electromagnetic
torque M; = k1, of the ith motor, L,; and R, are the total inductance and resistance of the armature
circuit of the ith motor, k,; is coefficient of proportionality of the back emf u,; = k,;&; of the ith motor

u, = col(u,, u,,) (1.8)
is the two-dimensional vector of the voltages u,; and u,, supplied to the armature circuits of the DC motor.
Note that, since the first two equations in the system of equations of motion (1.1) of the TR describe
non-holonomic constraints 3, p. 105, Eqgs (5.24)] between the wheel chassis and the supporting horizontal
surface (realized by the wheels of the chassis), it follows that model (1.1) for the motion of the TR is
a non-holonomic electromechanical system.
Eliminating the variables Q,;;, Q,», 0y, &, from Eqs (1.1), and also using relations (1.2)—(1.8), we obtain
the equations of motion of the TR in the form of the following system of non-linear ordinary differential
equations (ODEs)

z=Fu,), 7, =2(t), t21, (1.9)
where

_ _ _ : L 1.10
(Zy = col(x, y.), 2, = col(¥,, 8), 23 = 22 = col (Y, 8), 2, = [,) (1.10)
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is the state vector of the TR, z; = col(z;, zp) (i = 1, ..., 4), and

F(zu,) = col(Fu(Z), Faz), Fa(2y), FalZy u,)) (1.11)
Fl(zi‘) = col(Y (IctgBcosy, ~ I,siny,), Y. (IctgBsiny, + [ cosy,))

Fy(23) = 73 = col(,, 8)

-4 m (1.12)
F3(2p) = C3(6, v, 0) + D3(0)1,
Fu(Z3 u,) = Ca(8,V1, 8, 1,) + Dau,
are vector functions, where

_31 . _4 - _
Z; = col(Zy, 231), 2y = col(Zy, 23, 24)
C3(8,V,,8) = -4 (0)b(0, ., 0), Ds(8) = A™(O)k,
A(B) = J,K4(0) +i, ;' Dy (0)A¢(8) = [a,0)], ;. (1.13)
b(6, 1, 0) = (J,%o(8) + k1 ko(8))] V| + i, D5 (8)b4(8, ¥, 0)

)
— . -« _ -1 \j’c — ~1
Ca(®, ¥, 0,1,) = L] {- R, -k,x,(8) J D, =L

0

Jys bpy Mps K15 ki, Las Ry k, are diagonal 2 x 2 matrices with diagonal elements J.;, iy, Wyis kftis Kmis Lais
R, k. (i = 1, 2), respectively.
Applying non-linear one-to-one continuously differentiable transformations of the coordinates of the
state space z (1.10) and 2 (6.18), that is
2 = Col(zl, 22, 23, 24) (1.14)
(3, = col(xp, yp), 2, = col(Y,, Kg), 23 = col(V, Kp), 24 = 1)
and control u, (1.8) and &, (6.19), that is,

i, = col(it,y, iiyy) (1.15)

as defined by the formulae (see Appendix, Section 6)

2= Wy(2), Z€ Qg (1.16)
2= ¥5'(2) = Dgl2), 2€ Qgq (1.17)
and
B, = Wos(Zhuy) (25 u,) € Qugs (1.18)
U, = Wos(Zs, i) = Yos(@y(29), ) = @523, 2,) (23, 8,) € Qoos (1.19)

respectively (where 23, = col (3, 73, Z4,), 23, = cOl(2y, 23, 24), D (F2) = col(Pga(2,), Pos(23), Boa(23), the
vector functions Wy(z) and @y(Z) of the form (6.37) and (6.38), respectively, are defined on the respective
sets Qy (6.39) and Qg (6.40), and the vector functions Wos(Z3, u,) and ®os(23, ,) of the form (6.41)
and (6.42), respectively, are defined on the respective sets Qs (6.43) and Quys (6.44)), we reduce the
equations of motion (1.9)-(1.13) and (1.8) of the TR to a simpler system of non-linear ODE:s of the
special form

:=FGa,), 2= 3), t21, (1.20)
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% being the state vector (1.14) of the system

Fz,) = Jy (9p(2) - F(@(2), ps(Z, 1)) =

= col(F\(Zyy, 231)s F2(23y), Fa(24), Falin)) (.2h
where Jy (Z) = 0®(2)/(dz) is the 8 x 8 Jacobian
Fi(21,23)) = c0l(25,C082y, 23,8inZ,,) = col(Vcosy,, Vysiny,)
Fa(2) = col(Zly, 232) = col(X5V 5 k) (122)

Fi(zy) = 2, = L, Fu(d,) = a,
are two-dimensional vector functions, 23, = col(2y, 23), and the first two equations describe non-
holonomic constraints [4].

Incidentally, a particular version of such a system of equations for a model of TR motion ~ an
automobile (in which the dynamics of the steering device and actuators, as well as the forces of elasticity
and attenuation acting on the elements of the steering device, are ignored) — was described previously
in 5, p. 20, Egs (1)-(5)].

We shall assume that the auxiliary control impulses i, and #i,, (1.15) are such that

Uat = Uy, Bo=u 1.23)
1 a? 2 ;

where u; and u, are the components of the vector of controls

u = col(uy, uy) (1.24)

supplied to the inputs of system (1.20)—(1.23), (1.14), (1.15).
Then the equations of the model of TR motion of the special form (1.20)-(1.24), (1.14), (1.15)
[referred to henceforth as the sp-model], may be written as a system of non-linear ODEs

= Flzu), zg=z2(ty), 12t (1.25)

where
z = col(zy, ..., 25) (2y =2y =col(xp, yp), 25 = col(V, v,)

(V=23 W, =2), 23 = col(Tar, Kp)  (Tar = 243, Xp = 23) (1.26)
24 = ol(fiyy, K) (R =Kg=24y), 25 = cOl(iiyy, Lad) (g = itat, Loz = 243))
is the state vector of the TR, z; = col(z;), zi2), 2} = col(z, zjy 1, ... . 2j).j = iy 2] = z;, and
F(z, u) = col(F|(2,), Fy(2y1: 23), F3(24), Fa(zs5), Fs(u)) (1.27)
Fi(z,) = col(z,,€082,, 25;5in2p,) = col(Vycosy,, Vgsiny,)
Fo(231,23) = Dy(25))23 = CO](?M,KBVB), D,(z;,) = diag(1, z,;) (1.28)
Fi(zy) = 24 = col(i,, X), Falzs) = z5 = col(it,y, 1), Fs(u) = u

are vector functions.
Note that the state vector z (1.26) of system (1.25)-(1.28), (1.24) is related to the state vector Z of
the original equations of TR motion (1.9)—~(1.13) and (1.8) by non-linear transformations of the form

H,2+ Hota = H\Wy(2) + Hyfta (2 = Wy(2)) (1.29)

il

Z

z = @y(2) = Oy(Hyz) (3= Hyz) (1.30)

1

where
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fia = col(ital, fta2) = col(,, u,,) = col(zyy, 25;)
: - (1.31)
(Bar = gy = 24y, a2 = Uy = Ual = 25;)

and H,, H, and H, are constant matrices of the respective orders 10 x 8, 10 x 2 and 8 x 10, whose elements
are respectively

hyyy = by = h135 = Ry = by = higy = hge = hl,lO,S =1
hon = hogy = 1 (1.32)
hoyy = hypp = hysy = hyss = hosy = hygg = hygs = hy g 10 = 1

all the other elements being zeros.

We also note that, for the original model (1.9)~(1.13) of TR motion, the vector of the voltages u,
supplied to the armature circuits of the DC motors is related, as follows from Eqs (1.19) and (1.23),
to the vector of controls u (1.24) of system (1.25)—(1.28) by non-linear transformations of the form (1.19),
(6.42)

Uy = Bos(Zy ;) = Pos(¥oa(23), ) = Bos(¥or(23), Ualte, italty), 1, w)) (133)
where
Woa(Z3) = col(Pop(Zy), Yos(23), ¥ou(2)))
i, = coliiyy, fizy) = col(iiyg, uy) = col(Uat(te, Balto), b ), ) =
= Ua(tg, falto), t, 8) = col(Ta1(ty Galte), 1, uy), Uaz(uy)) (1.34)
t
[ﬁal ={,(1) = h;"ﬁa(t) = ||1, t-tonfm(to)+f(t—s)u,(s)ds =
fo
!

= 8,(t0) + (= tdiye) + [ (£ = Yy (s)ds = Uiy Rulio) 1, 4y)

o
i,y = Uaruy) = "z]

hy = col(1, 0) is a two-dimensional vector, the asterisk denotes transposition, and i, is the state vector
(1.31) of the linear system of ODEs

fia = Polta+ Qquy, ftao = fa(ty), 121 (1.35)
where
Po={01] g = “"” (1.36)
00 1
such that
t
Ba() = col(Bar(0), faz(1) = & iialtg) + [¢ 7" Qguy(s)ds =

Iy

!

Ba(ty) + j
LA

1t-1,
0

]

ul(s)ds = 0a(t0, l‘ia(to), t, u]) =

t—s
1

col(Uai(ty, falty): t, uy), Uar(ty, Balty), 1, uy)), 121, (1.37)
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where f]a, is the function defined in (1.34)
- 1
Uarty, Raltg), 1) = Ba2(t) = hFitalt) = far(tg) + fu,(5)ds

Iy

and h, = col(0, 1) is a two-dimensional vector. ‘

2. In what follows the problem will be formulated for equations of the sp-model of TR motion
(1.25)—(1.28), (1.24), which is more convenient for preliminary investigation. The problem may be
examined in a similar way for the original equations of the model of TR motion (1.9)-(1.13), (1.8).

System (1.25)—(1.28), (1.24) is said to be controllable [6] if, for any two states z,; € RY and Z, € R
(where R" is Euclidean n-space) and any ¢ < £, t; -y < ce, a control u = u(t) (1.24) exists such that
the corresponding solution z(#) (1.26) of system (1.25)-(1.28), (1.24) satisfies the boundary conditions

2(tg) = Zp00  2(1y) = 2y (1.38)

A solution
z=12,(), te[ty1] (1.39)

of system (1.25)—(1.28), (1.24) satisfying the boundary conditions (1.38) will be called a programmed
motion (PM) and the corresponding control

u = u,(), te eyl (1.40)

will be called a programmed control.
Let us consider some PM z,(¢) (1.39), (1.38) of system (1.25)—(1.28), (1.24). We shall say that it is
stabilizable if a control law exists with feedback with respect to the state vector z,

u=u(tz), t2t, (1.41)

which guarantees asymptotic stability of the PM z,(¢) (1.39), (1.38), in such a way that, after a given
time 7, > 0 (¢ < £, + T, = ¢, < ;) (the attenuation time of the transient e(?) = z(¢) - z,(¢) in the closed-
loop system (1.25)—(1.f8), (1.24), (1.41), characterizing the speed of response of the control system),
one is guaranteed a prescribed accuracy €, > 0 of stabilization of the PM z,(¢) (1.39), (1.38), that is, in
such a way as to guarantee satisfaction of the estimate

le(l <e,, Vt2t,=1+T, t,<t,=t,+T,<1 {1.42)

2

where everywhere {a| = (o] + ... + a2)? is the Euclidean norm (magnitude) of the vector a =

col(ay, ... ,a,) e R".

2. THE EQUATIONS OF TR MOTION IN CANONICAL FORM

The methods proposed below to investigate the controllability conditions for TR, the algorithms for
constructing programmed controls and PMs, the synthesis of stabilizing control laws, and the analysis
of the stability of PMs of TRs are based on reducing the equations of the sp-model of TR motion
(1.25)—(1.28), (1.24), and the equations of the original model of TR motion (1.9)~(1.13), to canonical
form by non-linear transformations of the coordinates of the state and control space.

We shall say that the equations of TR motion are in canonical form if they are represented as a linear
ODE

i}

X =Px+Qw, x(1) = x5 t2¢t (2.1)

where

, 4
x = col(xy, ..., x5) = col(xy, Xy, x§ ))

(2.2)
(x)y =col(xg, yp)X; = %;_1,1=2,...,5)
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and x are ten-dimensional vectors of canonical stdte variables of the TR at the actual and initial instants
of time, x; is a two-dimensional vector, xf’) = x (¢) is the ith derivative with respect to £ of x; = x(1);

Xy =X = x9
1

w = col(w, w,) (2.3)

is the two-dimensional vector ‘canonical’ controls; and P and Q are constant partitioned matrices of
dimensions 10 x 12 and 10 x 2, of the form

o
I

0 I,

P = ,
00

(2.4)

where 1,,, is the m x m identity matrix and O is the zero matrix of appropriate order.

3. REDUCTION OF THE EQUATIONS OF THE SP-MODEL
OF TR MOTION TO CANONICAL FORM

We shall construct transformations of the coordinates of the space of states z and controls u of the
equations of the sp-model of TR motion (1.25)-(1.28), (1.24), which will reduce them to the simpler,
canonical form (2.1)—(2.4). We shall look for transformations in the form

x = ¥(2) (3.1)

w = Po(z, u) (3.2)
where ¥ and ¥ are ten- and two-dimensional vector functions
¥(2) = col(P,(2)), ¥a(z), ¥s(53), Wal(23), ¥s(23)) (3.3)
X, = ‘Pl(zl) =3 (34)
¥, (i = 2, ..., 6) are as yet undetermined two-dimensional vector functions.
We shall describe an algorithm for finding the unknown vector functions ¥; (i = 2, ... , 6). To that
end, let us consider the identities
LAYy

X = lill(Z1) = 2 x(ll) =X = lF(12) Z azk 4, 1=2345 (3.5)
k=2

where z} = col(z,, .. S Z), 1= 2 0W(22)/(0z,) is the 2 x 2 Jacobian, Substituting into (3.5) the derivatives
with respect to t1me x; (i =1, ..., 5) along trajectories of system (2.1)-(2.4), and the derivatives
zi(i=1,...,5)along tra]ectorles of system (1.25)-(1.28), (1.24), we obtain the following relations

x; = Fi(25) = c0l(z,,€082,, 25 8inzy,) = ¥y(z;) (3.6)

¥
X3 = BZZ(ZZ)Fz(Zzh 23) = Ly(23)Fa(231, 23) = L3(22)23 = ‘F3(22) (3.7)

(2)
(=X, x3 =%y =x1)

L,(z,) = 0¥,(z;) _ OF(z;) _ || coszy, —zy5inzy (33)
2 0z, 02, $inzy, 2;,€0825, .
€082y ~23 SNz
Ly(z5) = Ly(2)Dy(29y) = 2t 3.9)

. 2
SINZy; 251C082y)
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X, = 8‘1;3(7‘2)&(@1, 2) + 33( 2)1~"3( ) = K2 + L)z, = ¥o(28)
(xy =% =x))
K23 = a‘?z(;g)l‘"z(zm,zg), Ly(zy) = 8‘1332(:;) = Ly(z)
s = i‘%“;‘?nuzmné a(ZZ)Fk(z“,) = Ky(e)+ Lyz)zs = ¥s(2)
(25 = iy = 1\
KS(z;) = a\g“z(:;)Fz(z2l,z3)+ 32, (ZZ)Fg( 4)
Ls(z,) = 8‘1;42(:;) = Ly(zy) = Ly(zy)
: aq;izi) Fen 1)+ 241 5(z2) Py, )+
a‘}'as(:”ps(u) = Ko(2)) + Le(z)u = ¥(zh u)

(5)
(w=is=x")

4

IV (23) AV (z))
Ke(z3) = aszzz Fy(z23)+ ), aszkz F(zesn)
k=3
Y. ()
Le(zy) = asz(szz = Ls(z;) = Ls(zy)

311

(3.10)

(3.1H

(3.12)

(3.13)

(3.14)

(3.15)

Thus, we have constructed the original transformations (3.1) and (3.2) in analytical form (3.1), (3.3),
(3.4), (3.6)—~(3.13) and (3.14), (3.15), respectively.
We shall show that the original transformations (3.1), (3.3), (3.4), (3.6)-(3.13) and (3.14), (3.15) that
we have constructed are uniquely solvable for z and u, respectively. By (3.4), we have

zp = @y(x)) = x|

Let us evaluate the principal minors A; and A, of the matrix L, (3.8)

where

Al = C08222>0 for Ip € QZZZ = (—Tt/2, 1t/2)

Q+21, lf 221 = VB>0
Ay = 25,20 for z;€Q, = { ¢

Q. if 75 = V<0

Q= (€. ky)

Q;ZI = (—kV1 _£V)

are sets, €, and k- being certain positive real numbers, 0 < € < kyy < .

(3.16)

(3.17)

(3.18)
(3.19)
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Throughout what follows, to fix our ideas (in order to avoid superfluous notation and repeated
arguments), we shall consider the case in which the set €5, occurring in (3.17), is of the form (3.18),
that is '

Qi = Q =(ey, ky) (3.20)

and introduce a certain parameter py = 1 corresponding to that case.
Note that the case in which the set Q,,;, occurring in Eqs (3.17) is of the form (3.19), that is,

Q) = Q= (-ky, —€y) (3.21)

may be treated in an entirely analogues fashion by simply replacing the set (3.18) by the set (3.19), the
set (3.20) by the set (3.21), and py = 1 by p;, = —1 everywhere below in Sections 3-5. These will yield
estimates and propositions analogous to those derived below.

Thus, in the case when the set €,5;, occurring in (3.17), is of the form (3.20), it will follow from
Theorem 20.9 of [7, p. 484] that the transformation (3.6) is uniquely solvable for z, in the rectangular
domain

2
Qy, = {23 = c0l(z1, 220) € R : 231 € Ly = Q> 22 € Q) (3.22)

that is, the following inverse transformation exists

2 = Dy(xy) (3.23)

®,(x,) = col(®y;(x,), Pry(x,)) (3.24)

@y, (x;) = Pyla3, +x§2)“25221 = VyeQ,=QL, py=1 x¢Q, (3.25)
®,,(x;) = arcsin(xp/[@y;(x))]) € R, X, € Qg (3.26)

Qo, = {1, = col(xy, xp) € R? 1 25 = Dy(x) € Qo } (3.27)

Furthermore, since the matrices L, (3 8), Ly (39), L4 (3. 11) and Ls (3.13) are such that
|detLy(z2) | =|za1|> & > 0, |detLi(z) | = 22, >e>0(=3,4,506)forze Qy,, it follows that

rankLl.(zz) =2, H€ Q\Pz’ i=2..,6 (328)

and inverse matrices ;' () (= , 6) exist for the values z, € Qy,. Consequently, the transformations
(3 7),(3.10), (3.12) and (3.14) are umquely solvable for z3, z4, z5 and u, respectively, that is, the following
inverse transformations exist

7, = ®,(xp), i=345 (3.29)
where

Dy(x3) = Ny(xp)xs, @ixy) = My(xy )+ Ni(x)x;, i=45 (3.30)
Mi(x;_l) = —N.'(xz)Ki(q);‘l(x;‘l)), i =45 331)

Ni(x)) = L (®,(x,)) = L3'(®y(x)) = Niy(x), i =45
L;l(d>2(x2)) = Ly () = [lawij(xlly 21,20 L2x1j(X2) = %2/ P (x,) 3:32)

baj(3) = (~1Yxy 5[ @ (x)TP, j = 1,2

LY = col(@y(xy), @y(3), -, @y (x5 1)) -

u= <I>6(x§, w)
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(x5 W) = Mg(x3) + Ne(x,)w (3.34)

My(5) = ~Ng(x)Ko(D3(x3)), Ne(xy) = Lg (@5(xy)) (3.35)

Thus, taking relations (3.16), (3.23)~(3.32) into consideration, we have constructed a one-to-one
inverse transformation for the original transformation (3.1), (3.3), (3.4). (3.6)~(3.11)

7= ®(x), x€Qy (3.36)
where

D(x) = col(D;(x}), @y(xy), B3(x3), By(x3), P5(x3)) (3.37)

&, (i = 1, ..., 5) are the vector functions (3.16), (3.23)~(3.32), and
Qq = {x=col(x,, ... xs) € R'"*: 2= F(x) € Qy} (3.38)
Qy = {z=col(zy, ...z5) e Rz, € R i=1,3.4,5,2€ Qy } (3.39)

We shall now establish the following fact. Take any solution x(¢) of the ODE

%7 = W@k x5 1) w) (3.40)

which is equivalent to

?/stem (2.1)-(2.4) for w = Wo(@3(x,, 7, x, x4, 1), where 13 = col(x,, ... |
x5) = col(x, xP, 1, x

s
(¥)), substitute it into system (3.5)
i+1

x(ll) = x,‘ = q’l(zlz) = ‘P!+i(z2 ) = x§+|s = 1»2’3s4 (3.41)

where z) = z,, and use this system to define vector functions z,(¢), (i = 2, 3, 4, 5). Then the system of
vector functions

x,(8) = z,(8), 25(1), 75(1), 24(1), 25(2) (3.42)

will be a solution of system (1.25)—(1.28), (1.24).
Let us substitute the system of vector functions (3.42) into system (1.25)-(1.28), (1.24), thereby
converting all the equations of that system into identities, in particular, obtaining the identity

X = 4, =F(2)) (3.43)

Differentiating this identity with respect to ¢, we obtain
X =7 =% = Yz = ~5 (3.44)
2

For the moment, it is not yet possible to replace z; by the vector function F,, because we have yet to
show that the vector functions x(t), z,(¢), ... , z5(¢), obtained as described above from Eq. (3.40) and
system (3.41), satisfy the sp-system of ODEs (1.25)~(1.28), (1.24) - that is precisely what we have to
prove.

Subtracting identity (3.7) term by term from identity (3.44), we obtain

oY
82(22)(22 Fy(zp. 23)) =0 (3.45)
2

Similarly, differentiating the identities x; = W,(z3) (i = 3, 4, 5) (3.41) with respect to 1

o ‘L AW(2)
¥ = Yi(z) = Z,., i=234,5
2 k§2 azk k
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and subtracting the respective identities

a‘l‘ (z ) ;
X = W(Zz) 2 ——Fy(z5,25) + Z (ZZ)F,((Z,HI) i=3,4,52=u
from (3.10), (3.12) and (3.14), we obtain
7 (z ) :
2 L (G- F(ze ) =0, i =3,4,5 (3.46)

Let us write Egs (3.45) and (3.46) for the unknowns
ZZ_FZ(ZZI’ 23)7 2k_Fk(Zk+])’ k= 3; 4’5

in the form of a system

Jo(z3)(E— F3(23,23)) = 0 (3.47)
where
Zg = col(z3, ..., %), 26 = U, F;(Zzp Zg) = COl(F,(z51, 23), F3(24) F4(25), Fs(z¢))
and
AV(2)
Jo(z3) = "zs 2 (3.48)
2

is the 8 x 8 Jacobian, ¥3 (z%) = col(‘l’z (22), ¥3(23), ... , ¥5(23))-

Taking relations (3.6)—(3.13) into consideration, we conclude that the matrix function J; (3.48) is a
lower triangular partitioned matrix with 2 x 2 diagonal blocks L; (i = .,5)(3.8),(3.9), (3.11), (3.13)
which, according to condition (3.28), are non-singular. Therefore

rank/o(z3) = 8, Viie Q, (3.49)

where
Qo = {25 =col(z,, 23, 24) € R®: 2, € Qg 23,2 € R} (3.50)
Consequently, taking (3.49) into consideration, we conclude that the matrix function J; (3.48) is also

non-singular. Hence it follows that, at each point of the set Qy (3.50), system (3.47) has only the trivial
solution

—F;(szzg) =0

Noting also the identity (3.43), we conclude that the vector functiony = col(xy, z; ... ,z5) =z is a
solution of the sp-system of ODEs (1.25)-(1.28), (1.24).

4. CONTROLLABILITY AND ALGORITHMS FOR CONSTRUCTING
PROGRAMMED CONTROLS AND MOTIONS OF THE TR

We shall first show that the model of TR motion in canonical form (2.1)-(2.4) is completely controllable
[8, p. 269]. Since the matrix

s = o pPo, ... Pol (4.1)
has a submatrix Sy = ||Q, PQ, ..., P*Q|| for which, by (2.4), |detS,| = 1, and so
rank$ = rankS, = 10 (4.2)
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it follows that system (2.1)~(2.4) is completely controllable [8, p. 269, Theorem 3.1}, that is, a control

law

Pt -1 1 PT ”
w=w,=wyt)= 0% ' Ky (x,—€ xp,) (4.3)

exists, where
n

K0=Je

fo

P(t,~1) P*(t,-1)
e

QQ* dt (4.4)

is a constant positive-definite 10 x 10 matrix (by virtue of the complete controllability of system (2.1)—(2.4)
[8]) taking system (2.1)~(2.4) from any initial state x,(t)) = x,0 = ¥(z,) € R™ (in particular, for
zy0 € Qy, where Qy is the set (3.39)) to an arbitrary terminal state x,(t;) = x,; = ¥(z,) € R" (in
particular, for z,) € Qy) in a time ¢, -ty < - along the trajectory

1
Plt~1) P(1-5) v
x, = x,(t) = e °xp0+Je Qw,(s)ds, 1€ [ty,1,] (4.5)
fo
Note that in order to evaluate " %) P =9) Phi=0 PT

. where P is the matrix (2.4), we can use the
representation of ¢’* as

i P
=23 o
Hence, using transformations (3.6)-(3.13), we deduce that the control law

u=u, = col(uy,u,,) = <D6(xf,2, w,) = (D6(‘P;(zf,2), w,) =
5,5 5,5
= col(Dg, (¥3(z,2), w,), D, (Y3(z,0), w,)) (4.6)

(upi = qJGi(\P;(Zf,z), Wp), i=12)
where
5,5 3 5
\Yz(zpz) = 001(\1‘2(21,2), Y1(z52), -5 lI"S(zpz))

and w), and x, are defined as in (4.3)~(3.4), will steer the sp-model of TR motion (1.25)-(1.28), (1.24)
from any initial state z,(t) = z,0 € Qy, to an arbitrary terminal state z,(t)) = z,1 € Qy, where Qy is the
set (3.39), in a time ¢, — #) < « along the trajectory

2=2, =O(x,1) re[1yt)] 4.7)

Therefore, the sp-model of TR motion (1.25)—(1.28), (1.24) is also controllable.
We shall now show that the original model of TR motion (1.9)~(1.13), (1.8) is also controllable.
Using transformation (1.33), we deduce that the control law

4 o 4 _4 N
U, = Ugp = (DOS(ZPZ’ uap) = (DOS(WOZ(ZpZ)’ uap) (48)

where, by (1.34),
figy, = OBy, Bpy) = Ualty, flap(te), t,u,) =

= COl(fjapl(toy lanp(t()); t up])v 0ap2(up2))

(aapl = hT’aaP = ’iﬂPl = 'iapl(t) = aapl(to) + (1~ to)ﬁapz(to) + (4.9)
t

+ [t = 5)up (5)ds = Uapr (s, fap(to), 1, u,)
fo

aapZEUaP2(up2) = upZ)
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up; (i = 1, 2) are the vectors defined by (4.6), (4.3), (4.4), (4.7) and (4.5), takes the initial model of TR
motion (1.9)—(1.13) from any initial state z, (f)) = Z,y € Qy to an arbitrary terminal state Z,(4) =
Zp1 € Qyg, where Qyy is the set (6.39), (6.9), in a time 7, — £, <  along the trajectory

Zp = q)o(HzZp), Zp € Q\{h te [t()y t]] (410)

Therefore, the original model of TR motion (1.9)—(1.13), (1.8) is also controllable.

5. CRITERIA FOR THE STABILIZABILITY OF PMs OF A TR

1. We will first consider the problem of synthesizing stabilizing control laws w and analysing the stability
of a PM belonging to the set Qg (3.38), ¢ = ¢, for the canonical model of TR motion (2.1)—(2.4).

It follows from the complete controllability of the model (the validity of Egs (4.1), (4.2)) [8, p. 274,
Theorem 4.1] that a constant 2 x 10 gain matrix

Ty = [Tops s Tos (5.1)
exists, where I'g;(j = 1, ..., 5) is a (2 x 2) partitioned matrix, such that the matrix
'=P+0r, (5.2)

will have given eigenvalues A;(i = 1, ..., 10), in particular, for example, so that the matrix T" will be
stable (Hurwitzian) [8, p. 597], that is, ReA; < 0 ({ = 1, ... , 10). Moreover, the matrix [y (5.1) may be
chosen in such a way that the matrix I" (5.2) will have, say, given distinct real negative eigenvalues, that
is

<O (A #M,i%jij=1,..,10) (5.3)

Let us synthesize a control law with “canonical” feedback with respect to x, in the form
w=w,+o(x-x,) 5.4

Then the equation of the transients e, = x —x,, in the closed-loop system (2.1)~(2.4), (5.4), (5.3) will
have the form

éx = rex’ ex(to) = €00 tZtO (5-5)

Consequently, the PM x,(r) (4.5) of system (2.1)~(2.3), (5.4), (5.1)~(5.3) is asymptotically stable in the
large with an estimate

le.(D)] < Bole (to)|explyo(t—10)], €,(ty) = ey, 121, (5.6)

and moreover the transient e,(¢) will attenuate in the given aperiodic manner (in particular, for e, such
that e;g + x50 = X9 = x(ty) € Qo). Here

10
Yo = maxd, A,;<0, i=1,..,10; By= Y |F]|>0
i=1
where
-1

10 10
H(r-lk'lm) H(l,-—kk) ,
k=1 k=1
k=i k»i

g
n

1..10

are the coefficient matrices of the Lagrange-Sylvester interpolation polynomial [9, p. 49]

T(s~tg)
e

10
= Z l:,-exp[l,-(t - to)]

i=1
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and |4| = Z_ X

/:Iafj)l”z is the Euclidean norm (magnitude) of the n x n matrix 4 = {la;ll; ;-1 u-
Suppose '

€, = Hp'€e,>0 (le(0)| S8, VE21t, = tg+ T ) tg<t, =15+ T,<t) (5.7)

(where 0 < g < +eo is some constant, which will be defined below in (5.27), (5.28); &, > U is the
prescribed precision of the stabilization of the PM z,(r) (1.39), (1.38) of system (1.25)-(1.28), (1.24),
(1.41)) is the prescribed precision of realization of the PM x,(¢) (4’,5), and T, =1,-1, >0 (t.(} <t, =
to + T, < t;) is the prescribed attenuation time of the transient e(r) = x(t) — x,(t), characterizing the
speed of response of the control system. Using the expression

Em‘ = BO'ex(IO)lexp[YOTp] (58)
one can now obtain an estimate of the form

_ _ 1 B()lex(t())[
Tp = tp~t0 = 'Yoln_é——_—

ex

from which one can obtain the relation

lnw {5.10)

ex

1
'Y‘Z_.
‘0 Tp

which can be used, thanks to the presence of the gain matrix [ (5.1) in the control law w (5.4), to choose
the eigenvalues A;(i = 1, ..., 10) (5.3) of the matrix I" (5.2) in a well-founded manner.

We have thus shown that a PM x,(¢) (4.5) of the canonical model of TR motion (2.1)-(2.4), closed
by the control law w (5.4), (5.1)—(5.3), (5.10), is asymptotically stable in the large with an estimate (5.6)
for the magnitude |e (f)| of the transient e,(f) = x(t) —x,(t), so that one can guarantee the prescribed
precision €, (5.7) and attenuation time T, = t, -1, > 0 (t; < 1, = t, + T, < 1;) of the transient e,(r)
(that is, the PM x,(2) is stabilizable in the sense of the definition given in Section 1).

2. When solving the problem of synthesizing stabilizing control laws u and u, and analysing the stability
of a PM 2,(#) of the sp-model of TR motion (1.25)-(1.28), (1.24) and of a PM z,(¢) of the original model
of TR motion (1.9)—(1.13), (1.8) we will use the following.

Lemma. Suppose the following conditions are satisfied:
(1) the system of ODEs

é = Fe(e, t), e(tO) = €g, IZIO (511)
(where F is a vector function defined on the set

Qi‘e = {(e, t):ee€ QeCRny te [t07+°°)}

which satisfies the conditions for the existence and unigueness of a solution of system (5.11), and
moreover F, (0, t) = 0), subjected to the continuously differentiable transformation

e = A®(e,, 1) (5.12)
(where the vector function A®(e,, ¢) is defined on the set
Qo = {(e,1):e,€ Q, R, te [ty +)} (5.13)

and moreover
|AD(e,, 1) < |AD(e,)|, (e, 1) € Quq, AD(O,1)=0 (5.14)

with A®(e,) a continuous vector function, A®(0) = 0), is transformed to an equation

é, = Fole,t), efty) = eyq t2t (5.15)
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(where the vector function F,, is defined on the set
Q. L = llen 1) (e t)e Qyg, e = AdD(e,, 1) cQ; }

and moreover F,, (0, t) = 0)
(2) the transformation (5.12) is uniquely solvable for e,, that is, there is a unique inverse transformation

e, = AD (e, )= A¥(e, 1) (5.16)
where the continuously differentiable vector function AW(e, ¢) is defined on the set
Quy = {(e,1) 1 e = AB(e,, N T Qp, (€,,1) € Qyo) (5.17)

and moreover

IA¥ (e, 1) < |A¥(e)|, (e,1) € Quy, A¥(0,1)=0 (5.18)

A¥(e) being a continuous vector function, AP(e) = 0.
Under the conditions listed above, the solution e = 0 of Eq. (5.11) is asymptotically Lyapunov stable
if and only if the corresponding solution e, = 0 of Eq. (5.15) is asymptotically Lyapunov stable.

Proof. We first show that asymptotic Lyapunov stability of the solution e, = 0 of system (5.15) implies
the same property of the solution ¢ = 0 of system (5.11).

To that end, we shall first show that the Lyapunov stability of the solution e, = 0 of system (5.15)
implies that of the solution e = 0 of system (5.11).

Take any € > 0. Since (by the first assumption of the lemma) it follows from the estimate (5.14) and
the continuity of the vector function A®(e,) that the vector function A®(e,, ¢) is continuous with respect
to ¢, at e, = 0, uniformly with respect to ¢ € [t,, <), if follows that, for the given ¢ > 0, we can find
gy > 0 such that

e <& = lel = |AD(e,, 1) S|AD(e,)| <€, € [tg, ) (5.19)

where e, = e, (e, 1), € = e(eg, ).
Furthermore, since the solution e, = 0 of system (5.15) is Lyapunov stable, it follows that, given
gy > 0, we can find &, > 0 such that

leco] < 8o =>|e (e g ) <€g 1€ [t ) (5.20)

Consider the vector function A¥(e, f). Using the continuity with respect to e at e = 0 of the vector function
A¥(e, t;), and with &, > 0 as found above, we can find a & > 0 such that

leg| < 8= |eof = [A¥(eq, f)| <& (5.21)

By inequalities (5.19)—(5.21), we obtain

o] <8 = |eso] <8p=> |e (e 1) <€g=>|eleg, 1) <€, 121,

Consequently, Lyapunov stability of the solution e, = 0 of system (5.15) implies that of the solution
e = 0 system (5.11).

Now, it follows from the asymptotic Lyapunov stability of the solution e, = 0 of system (5.15) and
from the continuity of the vector function A®(e,) and Eqg. (5.14) that

le(0)] =2 0= [AD(e,(1)] =3 0= [AD(e (1), 1)] = le(t) 520

Consequently, the solution ¢ = 0 of system (5.11) is asymptotically Lyapunov stable.

Similarly (usmg the second assumption of the lemma, the continuity of the vector function A¥(e,)
and Eq. (5.18)), it can be proved that asymptotic Lyapunov stability of the solution e = 0 of system
(5.11) implies that of the solution e, = 0 of system (5.15). This proves the lemma.
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3. We will now synthesize a stabilizing control law u with feedback with respect to z for the sp-model
of TR motion (1.25)—(1.28), (1.24).
Let us consider a PM

N
[\
(]

g

(1) e Q,,, 121 (5.2
where

10 2
Q, = {z,=col(zy, ..., 2,5) € R 12, € R, 2,5€ Qy

Suplzpik(t)} = kzpik <o (l =3, 4,5, k=1, 2)} f§23)

21,

in which Qy, is the set (3.22) and k., = 0 (i = 3, 4, 5; k = 1, 2) are certain constants.

Substituting relations (5.4), (5.1)—(5.3) and (5.10) into (3.33) and using transformations (3.3)-(3.4),
(3.6)—(3.11) of the state space coordinates, we obtain the desired stabilizing control law with feedback
with respect to z

b

= col(uy, up) = @glx3, w, + To(x—x,)) =

Dg(¥3(23), w, + To(¥(2) - ¥(2,))) = BTy, 1,2) =
col(@e; (Ty, 1, 2), Bea Ty, 1, 2)) (5.24)
(1, = BTy, 1, 7) = hEB(W3(23), w, + To(¥(2) = P(z,))). i = 1,2)

where A, = col(1, 0), and &, = col(0, 1) are two-dimensional vectors, for the sp-mode} of TR motion
(1.25)-(1.28), (1.24).
The equation of the transient e = z - z, in the closed sp-model of TR motion (1.25)-(1.28). (1.24),
(5.24), (5.1)—(5.3), (5.10) has the form
é = F,e1t), e(ty) = e, 12t (5.25)

where
Fle,1) = Fle+ 1z, Og(¥3(e3 + 23), w, + To(Wle +2,) - ¥(z,)) - F(zpyu,)  (5.26)

ey + Zyy = 29 € Ly, Qy is the set (3.39), F(0, 1) = 0.

Let us estimate the transient e in Eqgs (5.25) and (5.26). Using the finite-increments formula [10,
p. 122, Lemma 3.1] for the vector function A®(e,, t) = @(e, + x,) - P(x,), relations (5.22), (5.23), (3.38).
(3.39), (3.27), the estimate (5.6) for the magnitude |e,(¢)| of the vector e (¢). and the estimatc

Al < 2 2 |a,|

i=lj=1
for the norm |A4| of an n x m matrix A, we estimate the magnitude |e| of the vector¢ =z~ . We
obtain '
le(D] = |2(1) —z,(1)] = |@(e,+x,) - D(x,)| = [AD(e,, 1) =
i 1
= [J'JM,(sex(t), t)ds}x(t) < |[Jaelse (), nds|le, (1) <
0 0
<Hole (D)= A&’O(‘fx(’)) S HoBole.(to)explyy(r—1p)] =
= U|AY¥ (eg, o) explyo(t — 1)), 121, (5.27)

where
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e(tg) + 2,(ty) = 2(ty) = z5€ Qy
Jao(€nt) = 0AD(e,, 1)/(de,)

sup Jia(C, 1) = < +o0
oe[0e1:>|A°(")l Ho

(0,e]={n,,:n,=5se,e+x,=x€ Qg 0<5<1)

(5.28)

0 < g < +oo is some constant, p = pgB,, APo(0) = 0.
Relations (5.27) and (5.28) imply the estimate

[AD(e, (1), )] < ADg(e,(1)) = pole,(1)]

ex(to)"'xp(to) = x(to) = er Q¢, tZtO

from which it follows that the vector function A®(e,, t) is continuous with respect to ¢, at e, = 0, uniformly
int € [ty, e ), and moreover AD(0, t) = 0; consequently, the first assumption of the lemma is valid.

Hence, using the continuity of the vector function A‘P(e 1) =Y¥(e + z,) - ¥(z,), where ¥ is the vector
function (3 3), (3.4), (3.6)—(3.13), and the fact that, since the solutione, = 0 of s system (5.5), (5.2), (5.3)
is asymptotically Lyapunov stable, it follows by the above lemma that the solution e = 0 of system (5.25),
(5.26), (5.2), (5.3) is also asymptotically Lyapunov stable, and relations (5.6)-(5.10), (5.2), (5.3) and
(5.1), we deduce that, if the sp-model of TR motion (1 25)—(1.28), (1.24) is closed by the control law
u (5.24), (5.1)—(5.3), (5.10), then the prescribed precisions g, > 0 of realization of the PM z,(¢) (5.22),
(5.23) and attenuation time T, = £, -, > 0 (ty < t, = o + T, < t;) of the transient e = z -z, are
guaranteed in such a way that the estlmate (1.42) is valid.

We have thus proved the following theorem.

Theorem 1. Let z,(¢) (5.22), (5.23) be a given (constructed) PM for the sp-model of TR motion
(1.25)-(1.28), (1.24).

Then the stabilizing control law u (5.24), (5.1)~(5.3), (5.10) with feedback with respect to z guarantees
asymptotic stability of the PM z,(f) (5.22), (5.23); the transient e(f) = z(t) - z,(¢) in the closed sp-model
of TR motion (1.25)—(1.28), (5 24), (5.1)-(5.3), (5.10) satisfies the estlmate (5.27), (5.28) one can
guarantee prescribed precision €, > 0 of the realization of the PM z,(¢) (5.22), (5.23) and attenuation
time T, =t, -ty > 0(t) <t, =ty + T, < 1) of the transient e = z - z, in such a way that estimate
(1.42) 1s valid.

4. We will now consider the problem of synthesizing a stabilizing control law u, and of analysing the
stability of a PM

Z, = 2,()e Q;,, t21 (5.29)
where
Q,, = {z,€ R*: 2, = Oy(Hyz,). 2,€ Q) (5.30)
for the original model of TR motion (1.9)—(1.13), (1.8).
Substituting the control law u (5.24), (5.1)-(5.3), (5.10) into (1.33), (1.34), and noting the estimate

(5.27), (5.28) of the absolute value |e(¢)| of the solution e(t) = z(f) —z,(¢) of system (5.25), (5.26), which
follows from Theorem 1, we obtain a stabilizing law for the variation of the vector of control voltages

4, = Oos(¥r(2), Ualty, altg), 1, B6(T, 1, 2))) (5.31)

supplied to the armature circuits of the DC motors, which guarantee asymptotic stability of the PM z,
(5.29), (5.30) with an estimate |&(¢)| for the transient

LY

= 2-7, = Dy(8+2,) - ®y(2,) =A®(2, 1) =
@y (H,(e +2,)) - Po(H,2,) = Ay (e, 1) (5.32)

(indicated below in (5.39) and (5.40)), where
2, = 2,(1) = Hyz (1), z,(1)e Q,,, 121, (5.33)
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in the original closed model of TR motion (1.9)-(1.13), (5.31), (5.1)-(5.3), (5.10). _
We first note that, since the solution e = 0 of system (5.25), (5.26), (5.2), (5.3), (5.10) is asymptotically
Lyapunov stable, it follows that the solution é = 0 (¢ = H,e and é = Hye = 0 for e = 0) of the system

e = Fo(2,1), e(ty) = &, (1) +2,(80) = 2(tg) = Zp€ Q4. 121 (5.34)
taking relations (5.2) and (5.3) into consideration, where
Fo(2,1) = HyF(e,1) = HyF (H,2 + HyAlta, 1), Alta = fta— itgp (5.35)
is also asymptotically Lyapunov stable with an estimate |é(f)}| of the transient é(t) = 2(r) — Z,(¢):
[e(0)] = |Hye(0)] < |Hy|le(t)l < [Ho||A¥ (4, t)| explyg(t —10)] =
= A|AW(H 2o + HyAdiao, 1o)|exp[Yo(t ~1o)], 121, (5.36)
where
b= [Hyu, &(tp) +2,(tp) = 2(tp) = Zp€ Qy
Aftao = Altalty) = Balto) - ftap(to)
and (because of inequality (5.10)) one obtains the prescribed precision
€ = |Hje, >0 (5.37)

(where . > 0 is the prescribed stabilization precision of the PM z,(f) (1.39), (1.38) of system
(1.25)-(1.28), (1.24), (1.41)) of realization of the PM Z,(t) (5.33) and the prescribed attenuation time
T,=t,-1>0(t <t,=ty+ T, <t,)of the transient € = Z - Z, = H,e, in such a way that the estimate

(<, Vi2t, =1,+T, <1, =1+T, <1 (5.38)

is valid.

Next (proceeding as in the proof of Theorem 1), using the finite-increments formula for the vector
function A®y(é, 1) = Dy(é + Z,) - Py(Z,) and relations (5.27), (5.28) and (5.36), we estimate the magnitude
|2] of the vectoré =z - z, (5.32). W[:e obtain

lel = |2-2,| = |®e(2+2,) - DPy(,)| = [ABy(&,1)| =

= < [2(e)l < figle(r)l =

1
[ [Jsa,(s2(0), t)ds]é(t)
0

i
[Jsay(s2(0), 1)ds
0

= Ado(2(1)) < o | AW (H, 4, 1) + HyAlkao, 1| exply,(t - to)] =
= BIAY(H,A¥ (&g, 10) + HyAllao, )] explyo(t — 1)1, 121, (5.39)

where
sup  |Jae(6., 1) =g < +oe
8,e10,2Lt21, (5.40)
[0, e] = {f, : A, = sé, é+2p=26 Q4. 0<s5<1}
B = flofl. AD(0)=0, Adao = Adalty) = dalty) - fap(fy)

and 0 < iy < 4+ is some constant.
Relations (5.39) and (5.40) imply an estimate

()] = |ADy(2(1), )| < ADo(e(n)) = fole(r)l, 121,
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from which it follows that the vector function Ad(é, t) is continuous with respect to € at é = (), uniformly
inf € [t, =), in such a way that A®y(0, 1) = 0, so that the first assumption of the lemma is satisfied.

Hence, by the continuity of the vector function AW(e, 1) = Wy + Z,) = ¥y(2,), where ¥y(Z) has the
form (1.16), (6.37), and since the solution é = 0 of system (5.34), (5.35), (5.2), (5.3), (5.10) is
asymptotically Lyapunov stable, it follows, again by the lemma, that the solutione = 0 (¢ = ADy(é, 1)
and e = Ady(0, ) = 0) of the system

¢ = F,(¢1), e(ty) = &g, eo(to) +2,(tg) = 2(ty) = € Qg, 121 (5.41)
because of the truth of (5.2) and (5.3), where

Fe(e,1) = (A®y(&, 1)), . py ) = Javoi(A¥o(2, 1), ) +

+J200:(A¥g (8, 1), 1) - Fo(AWy(2, 1), 1) (5.42)
Ay, 1) Ay, 1
Jaooi(&, 1) = ___aot____ Jawos(8, 1) = __;_sz__)

is also asymptotically Lyapunov stable and (because of inequality (5.10)) one obtains the prescribed
precision

g€ = 1€, >0 (5.43)

(where €, (5.37) is the prescribed precision of stabilization of the PM 2,(r) (5.33) in the sp-model of
TR dynamics (1.20)~(1.24), (1.15), (6.32), closed by the control law &, (6.35), (5.31), (5.1)-(5.3), (5.10))
of realization of the PM z(¢) (5.29), (5.30) and the prescribed attenuation time T, = ¢, - f, > 0
(to <1, =ty + T, < t;) of the transiente = Z -z, in such a way that the estimate

(1)l <&, Vit21, =1+T, 1,<t,=1+T,<1 (5.44)

is valid.
We have thus proved the following theorem.

Theorem 2. LetZ,(t) (5.29), (5.30) be a given (constructed) PM for the original model of TR motion
(1.9)=(1.13), (1.8).

Then the stabilizing control law u, (5.31), (5.1)-(5.3), (5.10) guarantees asymptotic stability of the
PM Z,(¢) (5.29), (5.30); the magnitude |é(¢)| of the transient &(f) = z(¢) - Z,(¢) in the closed original
model of TR motion (1.9)-(1.13), (5.31), (5.1)-(5.3), (5.10) satisfies the estimate (5.39), (5.40); the
prescribed precision £, (5.43) of realization of the PM z,(¢) (5.29), (5.30) and attenuation time 7, =
t, 1o >0t <1, =ty + T, < 1t;) of the transient é(f) = Z(f) - Z,(¢) are guaranteed, in such a way that
the estimate (5.44) is valid.

Note that, in order to find the above-mentioned estimates for |e(¢)| (5.27), (5.28) and |é(¢)]| (5.39),
(5.40), of the solutions e(r) and &(r) of systems (5.25), (5.26) and (5.41), (5.42), respectively, one can
also use the technique described in [11, pp. 921-928].

6. APPENDIX
We first apply to the equations of the original model of TR motion (1.9)-(1.13), (1.8) non-linear one-
to-one continuously differentiable transformations of the state space coordinates z (1.10) and

(6.1)

(Z, = col(xp yp), Z =2, =col(Y,0), Z=22=2=col(¥,0), Z,=1L)

and controls u, (1.8) and
#, = col(it,y, i) (6.2)

by the formulae
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z=¥(2), 1€ Qq

1= (9=281), ieQ
and

— S -4
u, = ‘PS(ZZ?.’ ua)

—-1 4 _ —=-1 =4 .4 N . .
u, = s (29, ) = Ws (Pnal2pp), #,) = Ps(zyy, 4,)
respectively, where
-4 N . ~4 ~ - o~
2y = c0l(Zyy, 23, 24)s  Zp2 = €ON2yp, 23, 24)

Here

Byy(35y) = col(@ay(Zny), B3(Za), Ba(Zry))s Ba(Zy) = col(Bay(Zy) Bra(Z))
P(2) = col(F1(2), 21), Fala). Pi(2s), Pal3))

(P1(2y, 25)) = col(Zy, —~ 1,082y, 213 — LysinZy,)

Fy(zy) = 2y, Ps(z5) = Pa(zy) = 72 = 2

Pu(zy) = ¢3(23) = 33 = F3(Z) =

= 6‘3(232) +Ds(23)24 = 1?4(222) + La(2)24

Ka(z) = Ci(52), Lalzp) = Da(zy), Iz = col(zy, 23))
B(Z) = col(®(Zy, 2y)» Ba(Z,), B3(Z;), Ba(Z))

(D1(Z), Zpy) = col(Zyy +1,c08Z,;, Zyp + I5inZy)

By(%,) = 3y B3(3y) = 73 BulF) = MalZy) + Nalipn)is
My(ip) = -NaGip)Ra(iay), Na(ip) = L (i)

3 - o~ 3 - _ ~ N
2 = C0l(2y,23) = 290 Iy = Iy 3 = 23)
are vector functions defined on the respective sets

Q4 if 8eQp={0eR :0<e<B<R/2-gy}

Q. =
Y olag, if 0eQy={8eR :-m2+eg<8<-g4<0}

where gg > 0 is some real number; the sets in this definition are

Qy = {z=col(x, Yo ¥, 0.¥,.8,,) € R® : 0 & 25}
Q«S = {z = col{xg, yp W, & ¥ 6, 70) = \T’(z) e R8 tze Q\T'}

while the vector functions
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(6.3)

(6.4)

(6.5)

(6.6)

(6.7)

(6.8)

(6.9)

(6.10)
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AT AT

— 4 = 4 )
Ws(2p u,) = Yal(2y) = 5, 2t o F(z3;) +
_ (6.11)
APa(23) . - _
+ = = F4(Z;2, ua) = K5(232)+L5(222)ua
az,
By = 8‘714(2‘;2)_ 3@4(2‘2‘2)~ 4 8‘?4(232)- _4
(Ks5(2p) = I In+ % F3(2p) + 7 Ca(2p)
T | 206> VR,
Ls(zp) = oz Dy = La(2)Ds) (6.12)
Bs(Zyy. i) = Ms(ip) + N5,
(Ms(23,) = ~Ns(2) Ks(Bp(E)), Ns(ip) = s (2))
are defined respectively on the sets
Qg = {(Z4,) : 2 = col(Z, 23, 24) = c0l(B, ¥, 8, 1) € Qg u, € R’} (6.13)
-4 _ -4 . e -
Qs = {22 8,) 1 29 = colzyp, 23, 24) =
(6.14)

= col(6, y, 6, }a) €Qg, i, = ‘?5(232, u,) e RZ, (2;2, u,) € Qys}

Then the equations of the original model of TR motion (1.9)~(1.13), (1.8) (after application of the
transformations (6.3)—(6.14)) may be written as a system of non-linear ODEs

7= F(Z ), %o =2, 121 (6.15)
where Z is the state vector (1.14) of the system, and
F(z5,) = Jg(®(2) F(®Q®), Bs(3 &,)) =

N (6.16)
= col(F1(Zy Z31), F2(Z3), F3(2y), Fa(t,)), Jg(2) = 0¥(2)/(92)

. .= . s _ (6.17)
F2(Z3) = 237 F3(Z4) = Z4’ F4(ua) = ua
are vector functions.
We then apply to system (6.15), (6.16), (6.17), (6.1), (6.2) non-linear one-to-one continuously
differentiable transformations of the state space coordinates Z (6.1) and

A

% = col(2y, 25, 23, 24) (2, = col(xp, yg)

5 . A 4 6.18
2, = col(y,, Kg), 23 = col(Vy, Kg), 24 =1,) (6.18)
and of the controls &, (6.2) and :
4, = col(a,y, i,,) (6.19)
by formulae
t =W, 1eQy (6.20)
1=9'@=002), 2eQ (6.21)

and
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i, = Ws(in, i,) (6.22)

5, = ¥3'(@a,) = ¥ (@niEh), 1,) = &s(2y, ) (6.23)

respectively, where 3%, = col(2, 23, 24),

W) = col(#1(Z)), WaZa) WalEny, 73) Wa(@n))

P1(z) = 7y, ¥,(2,) = col(Zy, flctgizz)

¥i(23,) = col(¥31(23) Pr2(Zn, 72))
¥, (32 = 74 lctgZ
31(23) = 23 clg ) 2 (6.24)
‘P})(Ezz, 232) = l— (1 + Ctg 222)232
P(3) = Wilim 2y) = Ka(Bn) + La(En)7,
I .
. .3 -3
. 3 a¥3(z;). sin zy; .
Ku(zy) = 5 < - 23
£67) 2187y, .
3o %3
lcos™z,,
. oW (3 . . .
La(Zp) = gi ) _ diag(lctgZy, I (1 + 18°%5,))
3
&(2) = col(®1(2)), B2(2,), D3(25 23), Ba(2,))
(®1(3)) = 2, = col(x, yg), ®2(2,) = col(D2(2y), $2(21))
&)21(221) = 2oy, 622(222) = arctg(lZ;,)
ds(33,) = col(Dn(2), D33y, 25)) 625
B3(2)) = tptan Braliy 23) = 2l (1 +351)
PR N - AN n ~ n n 3 .
Ba(2h) = Ma(B) + Na@)2er Ma(2)) = ~Na(3r) Ka(D2(23,))
A a-l & N -3 ~ a
Na(p) = L2 Dn(in)), ®n(h) = col(@n(iy), $3(3,))
2 = col(2p 22), 23y = c0M(Zy, 23))
are vector functions defined on the respective sets
Q, = Q5 (6.26)
Qg = {2=¥@De R :7e Qy} (6.27)
while the vector functions
W33y i) = Wa(Zy) = Ks(Z3) + Ls(Gp)a, (6.28)

o WG, avGEh). . L v .
[Ks(z§2)= 8‘22222 T+ 32322 T Ls(Zy) =——§—§f—”—)=l4(zn)
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k-3 A4 ~ "y ~4 ) r’s A
Ds(2y, #,) = Ms(2p) + Ns(2y,)2,

N . . a4 4 . . (6.29)
(Ms(233) = -Ns5(2)Ks(®2(2p)), Ns(2xn) = Ls (D2(2y))
b2(25) = col(@n(y,), Ba(2}), Ba(2h))
are defined on the respective sets
Qg = Qs (6.30)
Q,, = {(232, B,) 1 25, = $0aEn), 1, = Ws(Zhy 1), (B 1) € 955} (6.31)

Then the equations of TR motion (6.15), (6.16), (6.1), (6.2) (after application of the transformations
(6.20)-(6.31)) are reduced to a system of non-linear ODEs of the special form (1.20), (1.14), (1.15),
where

F@iza,) = 1y(®@) - F(®(2), ds(23, 2,)) (6.32)

is a vector function and the function Jy(Z) = 3¥(2)/(02) has the representation (1.21), (1.22).

Thus, the non-linear one-to-one continuously differentiable transformations of the state space
coordinates z (1.10) and 2 (6.18) and of the controls u, and #, (6.19) by formulae (1.16) and (1.17),
which have the form

2= W(2), z€ 8y (6.33)

= ¥;'(2) =@p(2), € Qg (6.34)

&

and formulae (1.18) and (1.19), which have the form

i, = Wos(23 u,) (6.35)

U, = Pos(Zy, i) (6.36)
respectively, where
2; = 001(22, 239 24) = COI(\VC» 91 ‘i’c: ér la)’ 2; = C01(22, 23, 24) =
= col(W,, Kpr Vi K 1)y @py(23) = col(@yy(3,), Pa(23), Poy(23) (6.37)
¥o(2) = ¥(P(2)
Dy(2) =¥, (2) = B(D(2)) (6.38)

are vector functions defined on the respective sets

Qpo = Qé (6.40)
and
4 A s 4 _ s b 4 o= 4
Wos(Z00, u,) = 1, = Ws(2ap, 0i,) = Ws(W22(222), ¥5(Z90, 4,)) (6.41)

are vector functions where
G4 /- & /- & 3 ot
Fn(23,) = col(Par(Zz), Pa(Zhy), PalZsy))

~ ~ (6.42)
Bs(2330 1) = U, = Wos (2, 1) = Yo (@p(23), )
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are defined on the respective sets

B, (e e By ) 049

A a B R 4 2
Qo,, = {(232' ), = ‘1‘05(z;2, ug) = ‘{'os(q)gzz(zgz)’ Ug), 2 € Qg u, € R} (6.44)

reduce the original equations of the model of TR motion (1.9)—(1.13), (1.8) to a system of non-linear
ODE:s of the special form (1.20)-(1.22), (1.14), (1.15).
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