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CONTROLLABILITY AND STABILIZATION OF 
PROGRAMMED MOTIONS OF AN AUTOMOBILE-TYPE 

TRANSPORT ROBOT-j- 

Yu. K. ZOTOV 
St Petersburg 

A non-linear model of the motion of an automobile-type transport robot (TR) with absolutely rigid wheels. a rtecring device 
and actuators based on DC motors, is considered. Such a model for TR motion is a non-holonomic electromechanical system 
and, if the dynamics of the actuators and the steering device (forces of elasticity and attenuation in its elements) i\ ignored, 
corresponds to the model of automobile motion devised by Lineikin [I]. Non-linear canonical transformations of the state and 
control space coordinates are constructed which reduce the initial equations of motion of the TR to a simpler canonical form, 
convenient for the analysis and synthesis of control systems for the TR. These transformations are used to find the conditions 
for the controllability of the TR as a controlled object. Algorithms are given for constructing programmed controls and programmed 
motions of the TR. Stabilizing control laws are synthesized that make the programmed motions of the TR asymptotically stable 
and guarantee that the transients will have preassigned properties. 0 2003 Elsevier Ltd. All rights resetvcd. 

1. EQUATIONS OF THE MATHEMATICAL MODEL OF 
THE MOTION OF A TRANSPORT ROBOT. STATEMENT 

OF THE PROBLEM 

1. We consider a model for the motion of an automobile-type transport robot (TR), which, as an 
electromechanical system, consists of several interlinked components: a four-wheeled chassis with a 
body, front and rear bridges, absolutely rigid wheels, a steering device whose elements admit of elastic 
deformation, and electrical actuators based on independently activated DC motors whose mechanisms 
for transmitting the motion (the transmissions) have absolutely rigid elements. 

The body of the TR consists of the body of the rear bridge and a longitudinal beam rigidly linking 
the body of the rear bridge with the fixed part of a mechanism for turning the front bridge. 

We shall assume that the TR is dynamically symmetric, that is, the centre of mass C of the body of 
the TR lies on the longitudinal axis BA passing through the midpoints A and B of the axles A I,4A, and 
BIBB2 of the front and rear wheels, respectively (see Fig. 1). 

Fig. 1 
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It will be assumed that the motion of each wheel can be considered as pure rolling without slipping, 
both longitudinally, in the plane of the wheels, and transversely, perpendicular to the plane of the wheels. 
Under these assumptions vA and vg, the velocity vectors of the midpoints A and B of the front and back 
axles, are parallel at each instant of time to the planes of the corresponding wheels; that is, vB, the velocity 
vector of the point B, will always point along the longitudinal axis BA and the velocity vector vA of the 
point A will always be at an angle 8 to that axis. 

When investigating the special features of plane-parallel motion of this TR model, we shall consider 
a simplified scheme of the model of TR motion of automobile type, devised by Lineikin [l] (see also 
[2, pp. 22-321 and later refined by Lobas [3, pp. 98-1091. 

Under the aforementioned simplifying assumptions, previously established relations ([3], p. 105, 
Eqs (5.24); p. 107, Eqs (5.34); p. 109, Eqs (5.41)) enable us to present the equations of motion of this 
TR model, relative to some fixed Cartesian system of coordinates (CSC) C = Oxyz, in the form 

4 = *,(lctgt3cosW,- l,sinWc) 

4’c = \jr,(lctgesinv, + f,cosv,) 

.L,ijai + R,iZ,i + k,idci = uai, i = 192 

where 

A,(0) = J, + mf*ctg*e 0, 

02 02 
= IlaOij(e)lli,j = 1, 2 

&J@,Ws, 0) = 
- m*&6 + F,(& VJlctge 

* 
.3 

- k,20 - $210 - k,**Q 

DOW = diag Jo = J + ml; + 21,Lzm, 

(1.2) 

xc, yc are the coordinates, and &, j, are the velocities of the centre of mass M of the TR in the fixed 
CSC Oxy, vc is the course angle - the angle of inclination (turn) of the longitudinal axis BA of the RT 
to the Ox axis, 0 is the angle of rotation of the front wheels, measures from the direction of the 
longitudinal axis BA of the TR, it is assumed that a leftward rotation of the wheels corresponds to positive 
values of the angles \~r, and 0, a dot over a symbol denotes the operation of differentiation with respect 
to time t; 1 = II + l2 is the length of the base of the body, the segments BA = II and BC = f2 are the 
distances from the centre of mass C of the TR to its front and back axles, m = ml + m2 is the mass of 
the TR, where ml is the mass of the body including the masses of the wheels, 0, = J1 + m& and J1 
are the moments of inertia of the body together with the wheels about a vertical axis through the points 
B and C, respectively, that is, JI is the central moment of inertia of the body, m2 and O2 are the mass 
and moment of inertia of the front axle with the steering device together with the front wheels about 
a vertical axis through the point A, 0 = O1 + O2 + m2Z2 is the moment of inertia of the TR about a 
vertical axis through the point B, J = J1 + O2 + m21f is the moment of inertia of the TR about a vertical 
axis Cz through the point C, A0 is a symmetric positive-definite matrix of order 2 x 2, b,, is a two- 
dimensional vector function, Do is a diagonal 2 x 2 matrix-valued function 

li~;l~ = %@I~~~l~, KO(8) = diag(lctgtX,,r-*, i,,) (1.3) 
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a, is the angle of rotation of the shaft of the ith DC motor 

v, = V ci = (v,)~, = r(cjl +&)I2 = i,:dr,r = 

= zctge\ir, = p&r, = I&, (ps = Kgl = WY3 

is the velocity of the point B(xB, yB, Y)~, equal to the projection V, of the velocity vector vc of the centre 
of mass of C(iZ, O),, of the TR onto the axis Bx’ (directed along the longitudinal axis BA of the TR 
toward the front part of the body of the TR) of the moving CCS C’ = Bx’~‘, it is assumed that if 
VB > 0 forward motion of the TR takes place in a direction that coincides with that of the Bx’ axis, but 
if V, < 0, the direction is opposed to that of the Bx’ axis, I and (il and & are the radius and angular 
velocities of the wheels of the rear bridge of the TR chassis, respectively, pe = 1 ctge is the radius of 
curvature K~ = pi’ = (Ictg6)-’ of the trajectory of motion of the TR at the point B, iPi and yPi are the 
coefficients of transmission and efficiency of the ith transmission reductor 

F,(8, qc, = k,,lctgOqfir, + k,,(lctge\ir,Y f F,, = 

= F,(V,) = $v1v,+kp&+F,., 

is the force of resistance to forward motion of the TR, kfv, 3 0 and krcz 2 0 are the attenuation 
coefficients, F,, 3 0 is a constant, Q, = -ky20 -kfzI& kf12e3 is a generalized force allowing for the forces 
of elasticity and attenuation acting on the elements of the steering device [3, p. 1091, k,, and kfzl, kf22 
are the stiffness of the steering device and attenuation coefficients, Q,cl and QJr2 are the components 
of the two-dimensional vector 

Q, = coI(Q,,. Q,,) (1.5) 

of the generalized (rotating) torques Q,, and QUZ conveyed from the motor shafts through the 
transmission to the wheels of the front axis and to the steering device, respectively, 

P, = Q,,fr (1.6) 

is the force acting along the longitudinal axis BA of the TR in the direction of BY’ axis. 

I, = COUl,,, Io2) ( 1 .v 

is the two-dimensional vector of the currents 1,1 and la2 in the armature circuits of the DC motors, 3, 
is the moment of inertia of the rotor of the ith motor, kf,, is the coefficient of the moment of resistance 
of viscous friction M,; = -kf,i&i on the shaft of the ith motor, kmli is the coefficient of the electromagnetic 
torque M; = kmiZai of the ith motor, L,i and R,i are the total inductance and resistance of the armature 
circuit of the ith motor, kc+ is coefficient of proportionality of the back emf u,; = kc& of the ith motor 

uo = col(u,*, u(Q) ( 1 .w 

is the two-dimensional vector of the voltages u,] and ua2 supplied to the armature circuits of the DC motor. 
Note that, since the first two equations in the system of equations of motion (1.1) of the TR describe 

non-holonomic constraints [3, p. 105, Eqs (5.24)] between the wheel chassis and the supporting horizontal 
surface (realized by the wheels of the chassis), it follows that model (1.1) for the motion of the TR is 
a non-holonomic electromechanical system. 

Eliminating the variables Q,,, QU2, al, a2 from Eqs (Ll), and also using relations (1.2)~(IA), we obtain 
the equations of motion of the TR in the form of the following system of non-linear ordinary differential 
equations (ODES) 

i: = F(Z UJ, 20 = 2(q)), t 2t, (1.9) 

where 

(?, = col(x,, y,), 22 = col(yr,, CJ), 23 = k* = col(\ir,, b), i4 = I,) (1 JO) 
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is the state vector of the TR, Zi = col(.?&, Ziz) (i = 1, . . . , 4). and 

Ri, UJ = col(F,(i;l>, F2(@, F3&, F4& u,>> 

& (2:‘) = col(*C(lctgCkosyrC - 12sinW,), ~Jlctg0sin~, + f,cos~,)) 

G(Z3) = 23 = col(qJc, 6) 

&(&) = C3@, qc, 6) + &(9)Z, 
- 4 
F4(12*, UJ = ~44(e, qc, 4 I,> + D4u, 

are vector functions, where 

-31 = cow,, Z3*), -4 
=2 222 = wi,,, 23, 24) 

c3m vc, 6) = -A-‘(W0, qc, 6% b,(e) = A-‘(e)k, 

A(e) = .wm + ~;lrl;l~;‘(e)A,(e) = Ilaij(e)(li, j = 1,2 

(1.11) 

(1.12) 

(1.13) 

J,, ip, $,, kfl, km, L,, R,, k, are diagonal 2 x 2 matrices with diagonal elements J~i, ipi, rlpi, kfli, k,i, Lai, 
Rai, kei (i = 1, 2) respectively. 

Applying non-linear one-to-one continuously differentiable transformations of the coordinates of the 
state space Z (1.10) and i (6.18), that is 

z = col(&,, iz,i3,i4) (1.14) 

(21 = coux,, Y&9 22 = col(~C, Ka), i3 = col( v,, ka), i4 = &, 

and control u, (1.8) and Li, (6.19) that is, 

a, = col(fi,,, &) (1.15) 

as defined by the formulae (see Appendix, Section 6) 

i = Y,(Z), z E ny() (1.16) 

2 = Y’,‘(i) = @,0(i), i E a,, (1.17) 

and 

ii, = Y(&, UJ ($9 u,> E QulO~ (1.18) 

u, = Y&i;, ii,) = Y&I&(?;), ii,) -4 = @‘o&2, fi,) -4 
(z29 fi,) E Qcpos (1.19) 

respectively (where 224, = co1 (f2, Z3, Z4,), Zi, = col(& i3, i4), @i2($) = c01(@&~), @a3(.$), @04($), the 
vector functions Y&) and @a(i) of the form (6.37) and (6.38) respectively, are defined on the respective 
sets a,+,,, (6.39) and &,a (6.40), and the vector functions Yr&,“, u,) and Q&$, Li,) of the form (6.41) 
and (6.42) respectively, are defined on the respective sets SIlros (6.43) and C&as (6.44)) we reduce the 
equations of motion (1.9)-(1.13) and (1.8) of the TR to a simpler system of non-linear ODES of the 
special form 

; z = P(i, ii,), 20 = i(to), t2t, (1.20) 
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3 being the state vector (1.14) of the system i 

(1.21) 

where J,,,(Z) = &I+,(~)/(&!) is the 8 x 8 Jacobian 

R,(i*l, 23,) = col(i~,cosl 2,, iJ1 sin.?,,) = col(VBcosvlC, V,sin\y,) 

P2(&) = col(?&, is*) = col(KBVB, &) ( 1.22) 
n A h 
F&) = E, = Ia, Fd(iia) = ii, 

are two-dimensional vector functions, iz2 = col(&, ?j). and the first two equations describe non- 
holonomic constraints [4]. 

Incidentally, a particular version of such a system of equations for a model of TR motion - an 
automobile (in which the dynamics of the steering device and actuators, as well as the forces of elasticity 
and attenuation acting on the elements of the steering device, are ignored) -was described previously 
in [5, p. 20, Eqs (l)-(5)]. 

We shall assume that the auxiliary control impulses a,, and fi,? ( I .15) are such that 
. . 
i&II = u,, i&*=u* ( 1.23) 

where ~1, and u2 are the components of the vector of controls 

u = col(u,, U*) (1.24) 

supplied to the inputs of system (1.20)-(1.23), (1.14), (1.15). 
Then the equations of the model of TR motion of the special form (1.20)-( 1.24), ( 1.13), ( 1.15) 

[referred to henceforth as the sp-model], may be written as a system of non-linear ODES 

i = F(z, u), zo = 2(&J)’ rrr, (1.25) 

where 
z. = col(z,, . . . . zg) (2, = i, = col(x,, ys), z2 = col(V,, WC> 

(v, = i3,, WC = &)v Z3 = COl(hzl, KJ& (kxt = &, Kg = 222) (1.26) 

z‘$ = col(ii,,, ii) (ii = ki-, = i32), zg = col(U,,, L2) (ii,, = i&l, ia* = 942)) 

is the state vector of the TR, z; = COl(Zi1, zi2), Z{ = COl(Zi, z;+l, . . . , 2;). j 2 i; z/ = z,, and 

F(z, u) = col(F,(z,), F2(z21, ~31, F3(z4L FJzs), F,(u)) 

F, (z2) = col(z,r coszz2, z21 sinz,,) = col( VBcoswC, VBsinv,) 

F2(zm zd = 4(z2,>z3 = col(k K~V~), &dz21) = diag(l, zzl) 

FJZq) = 24 = col(ii,,, ii), F4(zg) = z5 = col(ii,,, i&), F,(u) = u 

(1.27) 

( 1.28) 

are vector functions. 
Note that the state vector z (1.26) of system (1.25)-( 1.28), ( 1.24) is related to the state vector i of 

the original equations of TR motion (1.9)-( 1.13) and (1.8) by non-linear transformations of the form 

where 

A z = H,z+H,ii, = H,Y',(i) +H,i, (2 = 'PO(i)> ( 1.20) 

Z = ‘D,(2) = QO(H2z) (i = H,z) (I .30) 
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,. &7 = cd&,, ia*) = col(%,, ii,,) = col(+ 251) 

(fial = ii,, = Z4,, iia2 = ii,, = i&l = q,) 
(1.31) 

and Ht, & and H2 are constant matrices of the respective orders 10 x 8,lO x 2 and 8 x 10, whose elements 
are respectively 

h 111 = h122 = h,35 = h143 = h157 = h,64 = h,8, = h,, HI,8 = 1 

h,, = h,, = 1 
h2,, = h,,, = h,, = hM = h,, = h,, = h,,, = hz8, ,,, = 1 

(1.32) 

all the other elements being zeros. 
We also note that, for the original model (1.9)-(1.13) of TR motion, the vector of the voltages u, 

supplied to the armature circuits of the DC motors is related, as follows from Eqs (1.19) and (1.23), 
to the vector of controls u (1.24) of system (1.25)-( 1.28) by non-linear transformations of the form (1.19), 
(6.42) 

where 

Y&(i:, = We&,), Yb3(& Y&(i:)) 

48 = col(ii,,, fi,,) = col(ii,,, u*) = col(0&r, L&r), t, Ut), U*) = 

(1.34) 

,. 
u,2 = k&2) = u2 

i 

hl = col(1, 0) is a two-dimensional vector, the asterisk denotes transposition, and 2, is the state vector 
(1.31) of the linear system of ODES 

L . UO = P,i, + QOUI, Lo = ii&), t2 to (1.35) 

where 

such that 
f 

Z,(t) = col(i,,(t), iio2(1)) = epo’r-‘o)i.(to) + [epo"-"Q,u,(s)ds = 

(1.36) 

(1.37) 
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where GQ, is the function defined in (1.34) 

and h, = col(0, 1) is a two-dimensional vector. 
2. In what follows the problem will be formulated for equations of the sp-model of TR motion 

(1.25)-(1.28) (1.24), which is more convenient for preliminary investigation. The problem may be 
examined in a similar way for the original equations of the model of TR motion (1.9)-( 1.13) (1.8). 

System (1.25)-(1.28) (1.24) is said to be controllable [6] if, for any two states z 0 E RI0 and +,r E R’” 
(where R” is Euclidean n-space) and any to < cl, ct - to c 00, a control u = u(c) [1.24) exists such that 
the corresponding solution z(t) (1.26) of system (1.25)-(1.28), (1.24) satisfies the boundary conditions 

z(tlJ = zpo’ z(t,) = Zpl (1.38) 

A solution 
z = Zp(Or t E [‘(p t,l (1.39) 

of system (1.25)-( 1.28), (1.24) satisfying the boundary conditions (1.38) will be called a programmed 
motion (PM) and the corresponding control 

u = u,(t), t E [to, ‘,I ( 1.40) 

will be called a programmed control. 
Let us consider some PM zp(t) (1.39), (1.38) of system (1.25)-(1.28), (1.24). We shall say that it is 

stabilizable if a control law exists with feedback with respect to the state vector z, 

u = u(t, z), r>_t, (1.41) 

which guarantees asymptotic stability of the PM+(t) (1.39), (1.38), in such a way that, after a given 
time 2” > 0 (to < to + T = t < tt) (the attenuation time of the transient e(t) = z(t) -.z&) in the closed- 
loop system (1.25)-(1.!8), fi.24), (1.41), characterizing the speed of response of the control system), 
one is guaranteed a prescribed accuracy Ed > 0 of stabilization of the PM+(t) (1.39) (1.38) that is, in 
such a way as to guarantee satisfaction of the estimate 

le(Ol 5 &,. vq = to + T,, to < tp = to+ Tp < tl !1.42) 

where everywhere la 1 = (a: + . . . + a$“’ 
col(ar, . . . , a,) E R”. 

is the Euclidean norm (magnitude) of the vector u = 

2. THE EQUATIONS OF TR MOTION IN CANONICAL FORM 

The methods proposed below to investigate the controllability conditions for TR, the algorithms for 
constructing programmed controls and PMs, the synthesis of stabilizing control laws, and the analysis 
of the stability of PMs of TRs are based on reducing the equations of the sp-model of TR motion 
(1.25)-(1.28), (1.24) and the equations of the original model of TR motion (1.9)-(1.13) to canonical 
form by non-linear transformations of the coordinates of the state and control space. 

We shall say that the equations of TR motion are in canonical form if they are represented as a linear 
ODE 

where 

i = Px+Qw, x(t,) = x0, r2to (2.1) 

x = col(x,, . ..) xs) = col(n,, it, . . . . Xi4)) 

(XI = col(x,, ye), xi = ii- ), i = 2, . . . . 5) 
(2.2) 
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andxt) are ten-dimensional vectors of canonical state variables of the TR at the actual and initial instants 
of time, xi is a two-dimensional vector, x 
#9 = x1; I;. = $4 

ii’ = $)(t) is the ith derivative with respect to t of x, = xl(t); 
1 1 1 

w = col(w,, w2) (2.3) 

is the two-dimensional vector ‘canonical’ controls; and P and Q are constant partitioned matrices of 
dimensions 10 x 12 and 10 x 2, of the form 

(2.4) 

where Z, is the m x m identity matrix and 0 is the zero matrix of appropriate order. 

3. REDUCTION OF THE EQUATIONS OF THE SP-MODEL 
OF TR MOTION TO CANONICAL FORM 

We shall construct transformations of the coordinates of the space of states z and controls u of the 
equations of the sp-model of TR motion (1.25)-(1.28), (1.24), which will reduce them to the simpler, 
canonical form (2.1)-(2.4). We shall look for transformations in the form 

x = Y(z) (3-l) 

w = Yyz:, u) (3.2) 

where Y and Y6 are ten- and two-dimensional vector functions 

Y(z) = col(Y,(z,), Yz(z*), Y,(z& Y4(z$t Y’,(z& (3.3) 

x1 = Y*(z,) = z1 (3.4) 

‘yi (i = 2, . . . ) 6) are as yet undetermined two-dimensional vector functions. 
We shall describe an algorithm for finding the unknown vector functions Yi (i = 2, . . . , 6). To that 

end, let us consider the identities 

wherezi = col(z2, . . . 
with respect to 

, zi), i 3 2, MY&& is the 2 x 2 Jacobian, Substituting into (3.5) the derivatives 
time Xi (i = 1, . . . , 5) along trajectories of system (2.1)-(2.4), and the derivatives 

ii (i = 1, . . . ,5) along trajectories of system (1.25)-( 1.28), (1.24) we obtain the following relations 

x2 = F, (z2) = co1(z2t COSZ~~, z21 sinz22) = Y2(z2) (3.6) 

ay2k2) 
x3 = -F,(Z,,, Z3) = L2(z2)F2(z2,, z3) = L3(z2)z3 = ‘3tzi) 

az2 

(x2 = i,, x3 = i2 = X(12)) 

ay2(z2) @,(zz) 
L2(z2) = -Jy = - = 

1 

~0s~~~ -z21 sinz22 

2 az2 sinz,, z21 cOsZ22 I 

L,(zz) = L2(z*P,(zzl) = 
~0s~~~ -zi, sinzz2 

2 sinz22 z2i cosz22 
(3.9) 
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(3.10) 

(x4 = i, = x13)) 

awz$ (3.11) F2(z2p Z& L4(Z2) = -&--- = L3(Z2) 
3 

4 aw tz4) 
x 5 = yF2(z2,, z3)+ c + Fk(zk+,) = &(z;> + W,k5 = Wz;) 

k=3 (3.12) 

(zs = i, = x’p’) 

4 
K5(Z2) = -F2(z2,, z3) + vF3(z,, 

ay,(z$ 
az 

2 3 

L&2) 
ay4(& 

= - = L4(Z2) = L3(Z2) 
az4 

4 ay tz3 
W = a@F2(Z21,Z3)f x TFk(Zk+l)+ 

2 k=3 

awz3 
+ -F,(u) = &(z;) + L6(z2)u = Y,(z;, u) 

a3 

(w = i, = x(15)) 

(3.13) 

(3.14) 

4 awz3 
+ c ~Fk’Zk+l’ 

k=3 k 
(3.15) 

Thus, we have constructed the original transformations (3.1) and (3.2) in analytical form (3.1), (3.3) 
(3.4), (3.6)-(3.13) and (3.14), (3.19, respectively. 

We shall show that the original transformations (3.1) (3.3), (3.4) (3.6)-(3.13) and (3.14) (3.15) that 
we have constructed are uniquely solvable for .z and U, respectively. By (3.4), we have 

ZI = <p,(x,) = x, 

Let us evaluate the principal minors A1 and A2 of the matrix L2 (3.8) 

A, = COSZ~~>O for z22 E QZ22 = (-K/2, X/2) 

A2 = z2, f 0 for z2, E QZ2, = 
G219 if z21 

a,, 1 if z21 

where 

= v,>o 
= v,<o 

(3.16) 

(3.17) 

(3.~8) 

(3.19) 

are sets, q, and kv being certain positive real numbers, 0 < EV < kv < 00 
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Throughout what follows, to fix our ideas (in order to avoid superfluous rlotation and repeat& 
arguments), we shall consider the case in which the set Qz2,, occurring in (3.17) is of the form (3.18), 
that is 

LR 221 = q2, 5 (E”, k,) (3.20) 

and introduce a certain parameter pv = 1 corresponding to that case. 
Note that the case in which the set S&r, occurring in Eqs (3.17) is of the form (3.19) that is, 

n z21 = Cl,, E (-k,, -E”) (3.21) 

may be treated in an entirely analogues fashion by simply replacing the set (3.18) by the set (3.19) the 
set (3.20) by the set (3.21), and pv = 1 by pv = -1 everywhere below in Sections 3-5. These will yield 
estimates and propositions analogous to those derived below. 

Thus, in the case when the set L&t, occurring in (3.17) is of the form (3.20), it will follow from 
Theorem 20.9 of [7, p. 4841 that the transformation (3.6) is uniquely solvable for z2 in the rectangular 
domain 

Qv* = {z2 = CO~(Z~~, z22) E R2 : t21 E fiz21 = Q;,, 7 222 E Q,,,) (3.22) 

that is, the following inverse transformation exists 

z2 = @2(4 (3.23) 

@2(x,) = W@2,(x2)1@22(x2)) (3.24) 

@,*(x2) = p”(x;l + x:2)1’2 =z21 = v, E Qz2, = q,,, pv = 1, x2 E aq (3.25) 

@22(x2) = wcsin(x224%,(X2)1) E Qz22T x2 E Qb, (3.26) 

cl Qz = {x2 = col(x,,, xz2> E R2 : z2 = Q2(x2) E &,J (3.27) 

Furthermore, since the matrices L2 (3.8) L+ (3.9), L4 (3.11) and L5 (3.13) are such that 
( detL&) ] = ]zzl ] > Q,J > 0, ] deLLi ] = zir > EF > 0 (i = 3,4,5, 6) for z2 E aYy2, it follows that 

rankli(z2) = 2, ~2 E Qy2, i = 2, . . . . 6 (3.28) 

and inverse matrices L;’ (Q) (i = 2, . . . ,6) exist for the valueszz E QYr Consequently, the transformations 
(3.7), (3.10), (3.12) and (3.14) are uniquely solvable forz3,zq,z5 and U, respectively, that is, the following 
inverse transformations exist 

zi = cD,(x& i = 3,4, 5 (3.29) 

where 
3 

@3cx2) = N3(X2)X3, @itx;) = M,(x~-‘) + N,(x,)x,, i = 4,5 (3.30) 

M,(xi-‘) = -Ni(x2)Ki(@;-‘(xl-l)). i = 4,5 

N,(x,) = I!,~‘(@~(x~)) = L;‘(02(x2)) = N3(x2), i = 4,5 
(3.31) 

&1(@2(X2)) = L2,(x2) = (112xij(x2)lJi, j = *, 29 /2x1 jtx2) = ‘2j’@21(‘2) 

l2,2j(X2) = (-l)jx2,3- j/[@21(x2)12Y 
(3.32) 

j = ‘9 2 

cp;- ‘(x;- ‘) = COl(*2(“2)9 @3(X;), **.t @i-*(xi-‘)) 

5 
(3.33) 

u = (P&2, w> 
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@6(x;, WI = M&) + N,(x,)w (3.34) 

WG) = -wqwG(X:))9 NdX*) = L;lw*(x,)) (3.35) 

Thus, taking relations (3.16), (3.23)-(3.32) into consideration, we have constructed a one-to-one 
inverse transformation for the original transformation (3.1). (3.3). (3.4). (3.6)-(3.1 I) 

z=@(x), xcL-2, (3.36) 

where 
@(x) = col(@,,(x,h @*(x*), %(-A ~&>~ w:,> (3.37) 

Q; (i = 1, . . . , 5) are the vector functions (3.16) (3.23)-(3.32) and 

R, = (x = col(x,, . . . . x5) E R” : .z = F(x) E L-l,} (3.38) 

a, = {z =col(zr ,..., zs)eR 10 :~~~R*,i=1,3,4,5;z~~n~~) t3.39) 

We shall now establish the following fact. Take any solution x,(t) of the ODE 

(5) 
Xl = Y,(a$(i,. x ;2’, xi3! xj4’), u) (3.40) 

which is equivalent to :@ern (2.1)-(2.4) for w = Yh(@i(.;,, xi’), x; , 
xs) = col(ir, x\~), I&‘), x\ ), substitute it into system (3.5) 

(‘) x\‘)), u), where xi‘ = coI(x2, . . . , 

(0 
XI = ii = ‘Pi(Zi) = Y;+~(z;+~) = xi+,, i = 1,2,3,4 (3.41) 

where 2: = z2, and use this system to define vector functions z,(t), (i = 2, 3,4, 5). Then the system of 
vector functions 

x,(l) = z,(G z*(r), z3(0, zq(t), zg(t) (3.42) 

will be a solution of system (1.2.5)-( 1.28), (1.24). 
Let us substitute the system of vector functions (3.42) into system (1.25)-(1.28), (1.24) thereby 

converting all the equations of that system into identities, in particular, obtaining the identity 

il = il = F,(z*) (3.43) 

Differentiating this identity with respect to t, we obtain 

aw2). 
-i-‘, = 21 = i, = Y2(z2) = -z az2 2 

For the moment, it is not yet possible to replace J& by the vector function F,, because we have yet to 
show that the vector functions x,(t), z2(t), . . . , zg(t), obtained as described above from Eq. (3.40) and 
system (3.41) satisfy the sp-system of ODES (1.25)-(1.28) (1.24) - that is precisely what we have to 
prove. 

Subtracting identity (3.7) term by term from identity (3.44) we obtain 

Similarly, differentiating the identities xi = Yi(z$ (i = 3, 4, 5) (3.41) with respect to r 

(3.45) 
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ii = qqz;> = q$F,(I,,. z3) + i q@Fk(Zk+,l, 
2 

i = 3,4,5;zg = u 
k=3 zk 

from (3.10), (3.12) and (3.14) we obtain 

i = 3,4,5 (3.46) 

Let us write Eqs (3.45) and (3.46) for the unknowns 

&--F&,, 23)~ ik-Fk(zk+ ,), k = 3, 4, 5 

in the form of a system 

where 

and 

4 .5 5 6 
Jo(z2Nz2 - F2(z2,r ~3)) = 0 (3.47) 

6 
23 = col(z,, . . . . z6), z6 = u, f? 2 ~211~:) = col(~2(zz,, ~31, F3(z4), F4(z5)r F5(z6)) 

4 
J&J = 

ayb.3 

az: 
(3.48) 

is the 8 x 8 Jacobian, Yi (4) = c~l(Y~(z~), ‘I!&& . . . , Y5(z~)). 
Taking relations (3.6)-(3.13) into consideration, we conclude that the matrix function ./a (3.48) is a 

lower triangular partitioned matrix with 2 x 2 diagonal blocks Li (i = 2, . . . ,5) (3.8), (3.9), (3.11), (3.13) 
which, according to condition (3.28), are non-singular. Therefore 

rank/,(z$ = 8, Vzz E n,, (3.49) 

where 

n JO = {z;= COl(z,, z3r z4) E R6 : z2 E fiyyz, z3, z4 E R2} (3.50) 

Consequently, taking (3.49) into consideration, we conclude that the matrix functionJo (3.48) is also 
non-singular. Hence it follows that, at each point of the set aJo (3.50) system (3.47) has only the trivial 
solution 

i: - 13(ZZl, z:> = 0 

Noting also the identity (3.43), we conclude that the vector function y = col(.xI, z2 . . . , z5) = z is a 
solution of the sp-system of ODES (1.25)-( 1.28), (1.24). 

4. CONTROLLABILITY AND ALGORITHMS FOR CONSTRUCTING 
PROGRAMMED CONTROLS AND MOTIONS OF THE TR 

We shall first show that the model of TR motion in canonical form (2.1)-(2.4) is completely controllable 
[8, p. 2691. Since the matrix 

S = 1112, PQ, . ..I P9Q/ (4.1) 

has a submatrix So = ] 1 Q, PQ, . . . , PQ]] for which, by (2.4) ]detSo( = 1, and so 

ranks = ranks0 = 10 (4.2) 
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it follows that system (2.1)-(2.4) is completely controllable [8, p. 269, Theorem 3.11, that is, a control 
law 

w=w P = w,(r) = Q*e p*ct, -‘)K,l(x,l - ePTxp*) 

exists, where 

(4.3) 

(4.4) 

is a constant positive-definite 10 x 10 matrix (by virtue of the complete controllability of system (2.1)-(2.4) 
[S]) taking system (2.1)-(2.4) from any initial state x&J = xpO = Y(z,a) E R” (in particular, for 
zpo E Ry, where Sz, is the set (3.39)) to an arbitrary terminal state x,(t,) = .xpl = Y(z,,) E I?‘() (in 
particular, for zpl E L&y) in a time t, - to <: m along the trajectory 

I 
fYf - $4 

xP 
= x,(r) = e xpo + I e p(‘-s)Qw,(s)ds, r E [to, r,] (4.5) 

Note that in order to evaluate epCtMrC1), ePCf -‘), ePCtl -‘), epT. 
representation of ep’ as 

where P is the matrix (2.4). we can use the 

Hence, using transformations (3.6)-(3.13) we deduce that the control law 

where 

u = up = col(u,,, up*) = (P&2’ wp) = qj(Y:(z;2), wp) = 

5 5 5 5 
= w~,,(y&2)~ wph ~,,(~‘,(Z,~)~ wp)) 

Cupi = a~i(y~(Z~*)7 wp)V i = l, 2, 

y:(z;,) = cowqz,,)~ y,(z;zh . . .7 Ys(z&)) 

(4.6) 

and wp and xp are defined as in (4.3)-(3.4), will steer the sp-model of TR motion (1.25)-( 1.28), (1.24) 
from any initial state z,(ta) = zpo E CL,,,, to an arbitrary terminal state zJtr) = zpl E CL+,, where CA+, is the 
set (3.39), in a time tl - to < 00 along the trajectory 

2 = 2, = @(x,9 r) rE [G-J, r,l (4.7) 

Therefore, the sp-model of TR motion (1.25)-( 1.28), (1.24) is also controllable. 
We shall now show that the original model of TR motion (1.9)-( 1 .13), (1.8) is also controllable. 
Using transformation (1.33) we deduce that the control law 

where, by (1.34) 

u, = u ap = @o&$2. GapI = ~o,v;,(i4,*)~ “& 

%p = We,,, fi,p*) = ir,(t,, ii&)), t, up) = 

= c01&,t(r,, ir.,(r,), t, up,), ijap2(Up*)) 

(4-H) 

(2 ap, = h:&p = Hop1 = iapl(r) = ii,,, + (r- rO)ii,,,(rO) + (4.9) 
f 

+ (r-s)u,,(s)ds~ Oapl(ro, Eap(rO), r, u,,) I 

ii np2 = kzp2(up2) = up21 
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Upi (i = 1,2) are the vectors defined by (4.6), (4.3), (4.4), (4.7) and (4.5), takes the initial model of TR 
motion (1.9)-(1.13) from any initial state Zp (to) = ZpO E Qlvo to an arbitrary terminal state ip (t,) = 
Zpl E QyO, where lRyrO is the set (6.39), (6.9), in a time t, - to < ~0 along the trajectory 

ZP - = @O(H,Z,), zp E a,, t E [to, f,] 

Therefore, the original model of TR motion (1.9)-( 1.13), (1 .S) is also controllable. 

(4.10) 

5. CRITERIA FOR THE STABILIZABILITY OF PMs OF A TR 

1. We will first consider the problem of synthesizing stabilizing control laws w and analysing the stability 
of a PM belonging to the set Qr, (3.38), t 3 to, for the canonical model of TR motion (2.1)-(2.4). 

It follows from the complete controllability of the model (the validity of Eqs (4.1), (4.2)) [8, p. 274, 
Theorem 4.11 that a constant 2 x 10 gain matrix 

exists, where Fsj(j = 1, . . . ,5) is a (2 x 2) partitioned matrix, such that the matrix 

will have given eigenvalues hi (i = 1, . . . , lo), in particular, for example, so that the matrix I will be 
stable (Hurwitzian) [S, p. 5971, that is, Re& < 0 (i = 1, . . . , 10). Moreover, the matrix IO (5.1) may be 
chosen in such a way that the matrix F (5.2) will have, say, given distinct real negative eigenvalues, that 
is 

hi<0 (Ai+Aj, i#j; i, j = 1, . . . . 10) (5.3) 

Let us synthesize a control law with “canonical” feedback with respect to X, in the form 

w = wp+r0(x-xp) (5.4) 

Then the equation of the transients e, = x -xp in the closed-loop system (2.1)-(2.4), (5.4) (5.3) will 
have the form 

@x = re,, e,(zo) = exO, t 2 to (5.5) 

Consequently, the PM+(t) (4.5) of system (2.1)-(2.3), (5.4), (5.1)-(5.3) is asymptotically stable in the 
large with an estimate 

le,(Ol~ Bole,Oo)J exphoO - to)l, e,(to) = exO, t 2 to (5.6) 

and moreover the transient e,(t) will attenuate in the given aperiodic manner (in particular, for eXo such 
that eXo + xpo = x0 = x(to) E ii&,). Here 

‘lo i = maxIi, &CO, i = l,..., 10; PO = i (Ti( > 0 
i=l 

where 

if (r-a,r,,) 
k= I 

-k#i 

are the coefficient matrices of the Lagrange-Sylvester interpolation polynomial [9, p. 491 
IO vt - 10) e = C fieXp[hi(t - to)] 

i=l 
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and /A 1 = X~,,Z~=,a~)l” is the Euclidean norm (magnitude) of the IZ x n matrix n = /Ja,,l);, ,. r, _ ,!. 
suppose 

E ex = &‘a,>0 ((e,(t)lI&,,,Qt2t,=r,+T,,t,<t,=to+T,<t,) (5.7) 

(where 0 < u~g < + 00 is some constant, which will be defined below in (5.27) (5.28); E, > (1 is the 
prescribed precision of the stabilization of the PM z,(t) (1.39). (1.38) of system (1.25)-( 1.28) (1.24) 
(1.41)) is the prescribed precision of realization of the PM x,(t) (4.5) and TIj = t - to > 0 (TV, < I,, = 
tO + ?[, < tr) is the prescribed attenuation time of the transient e,(t) = x(t) -,r,,(tf, characterizing the 
speed of response of the control system. Using the expression 

E,, = POle,(hJlexp[yo~,l (5.X) 

one can now obtain an estimate of the form 

1 PaIe&)l T, = tp-to = --%ln 
& es 

from which one can obtain the relation 

(5.0) 

(5.10) 

which can be used, thanks to the presence of the gain matrix To (5.1) in the control law w (5.4), to choose 
the eigenvalues h,(i = 1, . . . , 10) (5.3) of the matrix r (5.2) in a well-founded manner. 

We have thus shown that a PM x,(t) (4.5) of the canonical model of TR motion (2.1)-(2.4), closed 
by the control law w (5.4), (5.1)-(5.3) (5.10) is asymptotically stable in the large with an estimate (5.6) 
for the magnitude /e,(t) ( of the transient e,(t) = x(t) -x,(f), so that one can guarantee the prescribed 
precision E,, (5.7) and attenuation time Tp = to - rp > 0 (to < t,, = t,) + Tp < rr) of the transient e*.(t) 
(that is, the PM .X,,(L) is stabilizable in the sense of the definition given in Section 1). 

2. When solving the problem of synthesizing stabilizing control laws u and u, and analysing the stability 
of a PM z,(t) of the sp-model of TR motion (1.25)-( 1.28) (1.24) and of a PM Z,](t) of the original model 
of TR motion (1.9)-(1.13) (1.8) we will use the following. 

Lemma. Suppose the following conditions are satisfied: 
(1) the system of ODES 

P = F,(e, t), e(t,) = eo, r> to is.1 1) 

(where F is a vector function defined on the set 

fiF, = {(e, t) : e E Sz, c R”, t E [to, +=J)) 

which satisfies the conditions for the existence and uniqueness of a solution of system 
moreover E;,(O, t) = 0), subjected to the continuously differentiable transformation 

(5.11), and 

e = A@(e,, r) (,5.12) 

(where the vector function A@(e,, r) is defined on the set 

n Ao = {(e,, t) : e, E I&, c R”, t E [to, +=I > (5.13) 

and moreover 

IAQ(e,, t>J I IA6,(e,)l, (e,, f) E S&Q, A@(O, 1) = 0 (5.14) 

with A&(eJ a continuous vector function, A@O) = 0), is transformed to an equation 

6, = F,,(e,, t), ex(to) = exe, t 2 to (5.15) 
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(where the vector function F, is defined on the set 

and moreover F, (0, t) = 0) 
(2) the transformation (5.12) is uniquely solvable fore,, that is, there is a unique inverse transformation 

e, = A@-‘(e, t) =AY(e, t) 

where the continuously differentiable vector function AY(e, t) is defined on the set 

S2,, = {(e, t) : e = A@( e,, t) c QF,, (e,, t) E Q,,l 

(5.16) 

(5.17) 

and moreover 

lAY(e, t>l I lA+(e)l, (e, t) E R,,, AY(0, t) ~0 (5.18) 

AT(e) being a continuous vector function, Ap(e) = 0. 
Under the conditions listed above, the solution e = 0 of Eq. (5.11) is asymptotically Lyapunov stable 

if and only if the corresponding solution e, = 0 of Eq. (5.15) is asymptotically Lyapunov stable. 

Proof We first show that asymptotic Lyapunov stability of the solution e, = 0 of system (5.15) implies 
the same property of the solution e = 0 of system (5.11). 

To that end, we shall first show that the Lyapunov stability of the solution e, = 0 of system (5.15) 
implies that of the solution e = 0 of system (5.11). 

Take any E > 0. Since (by the first assumption of the lemma) it follows from the estimate (5.14) and 
the continuity of the vector function A@(e,) that the vector function A@(e,, t) is continuous with respect 
to e, at e, = 0, uniformly with respect to t E [to, -), if follows that, for the given E > 0, we can find 
&o > 0 such that 

le,l < E,, =s 14 = )A@(e,, 01 I [A&e,)/ < E, t E [to. -1 (5.19) 

where e, = ex(eti, t), e = e(eo, t). 
Furthermore, since the solution e, = 0 of system (5.15) is Lyapunov stable, it follows that, given 

&o > 0, we can find a0 > 0 such that 

(exO1 < 6, * (e,(exo, t)l < co+ t E Ito, -1 (5.20) 

Consider the vector function AY(e, t). Using the continuity with respect to e ate = 0 of the vector function 
A\y(e, to), and with 8, > 0 as found above, we can find a 6 > 0 such that 

leo( < 6 ==a (exo( = (Awed, %)I < 60 (5.21) 

By inequalities (5.19)-(5.21), we obtain 

leoI < 6 * lerOl < 6, * le,(exo, t)l < E. * le(eo, t)( -c E, t 2 to 

Consequently, Lyapunov stability of the solution e, = 0 of system (5.15) implies that of the solution 
e = 0 system (5.11). 

Now, it follows from the asymptotic Lyap_unov stability of the solution e, = 0 of system (5.15) and 
from the continuity of the vector function A@(eJ and Eq. (5.14) that 

le~(r)l 2L 0 * b’(e,(r))l e 0 * (A@(e,(t), t)l = [e(r)1 a 0 

Consequently, the solution e = 0 of system (5.11) is asymptotically Lyapunov stable. 
Similarly (using the second assumption of the lemma, the continuity of the vector function A*(eJ 

and Eq. (5.18)), it can be proved that asymptotic Lyapunov stability of the solution e = 0 of system 
(5.11) implies that of the solution e, = 0 of system (5.15). This proves the lemma. 
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3. We will now synthesize a stabilizing control law LL with feedback with respect to z for the sp-model 
of TR motion (1.25)-( 1.28) (1.24). 

Let us consider a PM 

ZpW E QZP’ t 2 t,) i 5.22) 

where 

nzp = {zp = col(zpl, . . . . zp5) E do : zpl E R*, zp2 E %v2: 

suplzpi,(t)l = kzpik<- (i=3,4,5;k= l>2)} 
l 2 1,, 

(5.23) 

in which RYq is the set (3.22) and kzpik 3 0 (i = 3,4,5; k = 1, 2) are certain constants. 
Substituting relations (5.4), (5.1)-(5.3) and (5.10) into (3.33) and using transformations (3.3)-(3.4), 

(3.6)-(3.11) of the state space coordinates, we obtain the desired stabilizing control law with feedback 
with respect to z 

u = col(u,, u2) = agx;, wp + To(x - x,)) = 

= @&(Z;), wp + ro(Y(z) - Wz,))) E G6u-0, tr z) = 

= CO~@~~U-~, t, z), S62wo, t, z)) 
- 5 5 (ui = @6i(ro, t, z) = h,‘@6(y’,(z,h wp + r,~~~z~ - w,m, i = 1,2) 

(5.24) 

where h, = col(1, 0), and h? = col(0, 1) are two-dimensional vectors, for the sp-model of TR motion 
(1.25)-(1.28), (1.24). 

The equation of the transient e = z - zp in the closed sp-model of TR motion (1.25)-( I .2X). ( 1.24), 
(5.24), (5.1)-(5.3) (5.10) has the form 

where 

t = F,(e, t), e(to) = eo, t 2 to (5.25) 

F,(e, r) = F(e + Zp, (06(y$e: + zz2), wp + rO(y'(e+zp)-y(Zp)w F(zp’ up) (5.26) 

elj + ipo = z. E !A+,, Qly is the set (3.39), F,(O, t) = 0. 
Let us estimate the transient e in Eqs (5.25) and (5.26). Using the finite-increments formula [IO, 

p. 122, Lemma 3. l] for the vector function AQ(e,, t) = @(eX + xp) - @(x,), relations (5.22) (5.23’), (3.38). 
(3.39). (3.27). the estimate (5.6) for the magnitude ]eJt) ] of the vector e,(r). and the cstimatit 

n m 

i=lj=I 

for the norm ]A ] of an n x m matrix A, we estimate the magnitude ]c ] of the vector e = z -- -iI’ We 
obtain 

le(t)l = (z(t) -z,(t)1 = I@( e,+x,) -fW,,)( = IAWe,, t)( = 
I 

5 ~ole,(O( = A&(e,(t)) 5 cloPole,(to)) expIyo(t - to>1 = 
= plAy(eo, to)/ exp[y,(t - to>], t 2 f. (5.27) 

where 
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(5.28) 

0 < us < +m is some constant, p = hOpO, A60(0) = 0. 
Relations (5.27) and (5.28) imply the estimate 

(A@(e,(G 01 5 A&de,(t)) = po(e,(t)l 

e,(to) + xp(ro) = x(t,) = x0 E 510, t 2 ro 

from which it follows that the vector function AQ(e,, t) is continuous with respect toe, ate, = 0, uniformly 
in t E [toto, -), an d moreover A@(O, t) = 0; consequently, the first assumption of the lemma is valid. 

Hence, using the continuity of the vector function AY(e, t) = Y(e + zp) - Y&J, where Y is the vector 
function (3.3), (3.4), (3.6)-(3.13), and the fact that, since the solution e, = 0 of system (5.5), (5.2), (5.3) 
is asymptotically Lyapunov stable, it follows by the above lemma that the solution e = 0 of system (5.25), 
(5.26), (5.2), (5.3) is also asymptotically Lyapunov stable, and relations (5.6)-(5.10), (5.2), (5.3) and 
(5.1), we deduce that, if the sp-model of TR motion (1.25)-(1.28), (1.24) is closed by the control law 
u (5.24), (5.1)-(5.3), (5.10), then the prescribed precisions E, > 0 of realization of the PM z,(t) (5.22) 
(5.23) and attenuation time Tp = tp - tp > 0 (to < tp = to + Tp c: tt) of the transient e = z - zp are 
guaranteed in such a way that the estimate (1.42) is valid. 

We have thus proved the following theorem. 

Theorem 1. Let z,,(t) (5.22), (5.23) be a given (constructed) PM for the sp-model of TR motion 
(1.25)-(1.28), (1.24). 

Then the stabilizing control law u (5.24), (5.1)-(5.3), (5.10) with feedback with respect toz guarantees 
asymptotic stability of the PM z,(t) (5.22), (5.23); the transient e(t) = z(t) -z,(t) in the closed sp-model 
of TR motion (1.25)-(1.28), (5.24), (5.1)-(5.3), (5.10) satisfies the estimate (5.27), (5.28) one can 
guarantee prescribed precision E, > 0 of the realization of the PM z,(t) (5.22), (5.23) and attenuation 
time Tp = tp - to > 0 (to < tp = to -t Tp c tt) of the transient e = t - zp, in such a way that estimate 
(1.42) IS valid. 

4. We will now consider the problem of synthesizing a stabilizing control law u, and of analysing the 
stability of a PM 

ZP - = Zp(t) E R,,, t 2t, (5.29) 

where 

4, = (2,~ R’:i, = ~OW,Z,)~ zp E Qzpl (5.30) 

for the original model of TR motion (1.9)-( 1.13), (1.8). 
Substituting the control law u (5.24), (5.1)-(5.3), (5.10) into (1.33), (1.34) and noting the estimate 

(5.27), (5.28) of the absolute value le(t) 1 of the solution e(t) = z(t) -+(t) of system (5.25), (5.26), which 
follows from Theorem 1, we obtain a stabilizing law for the variation of the vector of control voltages 

ull = q-l#&i:,, kz(r,, Z&)), t, wro, t, z>)) (5.31) 

supplied to the armature circuits of the DC motors, which guarantee asymptotic stability of the PM Zp 
(5.29), (5.30) with an estimate l?(t) 1 for the transient 

e = Z-2, = ao(2 + ip) - Qo(ip) = A@,(& t) = 

= @,(H2(e + 2,)) - Q,(H,z,) = A@,-,(e, t) 

(indicated below in (5.39) and (5.40)), where 
A 
ZP = 2,(t) = ~,z,(O, z,(t) E Qzpr t 2 GJ 

(5.32) 

(5.33) 
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in the original closed model of TR motion (1.9)-(1.13), (5.31), (5.1)-(5.3), (5.10). 
We first note that, since the solution e = 0 of system (5.25), (5.26), (5.2), (5.3), (5.10) is asymptotically 

Lyapunov stable, it follows that the solution & = 0 (e* = H,e and e^ = H2e = 0 for e = 0) of the system 
; e = h(2, ?I, 2(t,) = El) Zo(r()) +i,(r,) = ?(rfJ = 20 E n,, rzt, (5.34) 

taking relations (5.2) and (5.3) into consideration, where 

k(Z, 1) = HzF,(e, r) = H,F,(H,P+ H,Ai,, t), Ai, = ii.&, (5.35) 

is also asymptotically Lyapunov stable with an estimate \ E(t) 1 of the transient @(r) = i(r) - $(r): 

kYt>l = (H,dt)l~ lH~1ldt)l~ (H2(plAY(eo, ro)(exp[yo(r- ro)] = 
= PlAY(H,&, + HaA&, Qlexp[y,(r - r,)], r 2 to (5.36) 

where 
P = JH,lp, W,)+2/&) = i(r,,) = &E R, 

Aiio = Ai,(t,) = ia( ro) - i,,( to) 

and (because of inequality (5.10)) one obtains the prescribed precision 

te = JH,}&,>O (5.37) 

(where E, > 0 is the prescribed stabilization precision of the PM z,(t) (1.39), (1.38) of system 
(1.25)-( 1.28) (1.24) (1.41)) of realization of the PM +,(t) (5.33) and the prescribed attenuation time 
T,, = t,) - tn > 0 (to < tp = to -t- Tp < tl) of the transient e = i - &, = H,e, in such a way that the estimate 

Iz(t)l I e,, vr2rp = to + T,, to< r, = r. + T,< rl (5.38) 

is valid. 
Next (proceeding as in the proof of Theorem l), using the finite-increments formula for the vector 

function A@o(e^, t) = @(e* + f ) - <po(Z ) and relations (5.27) (5.28) and (5.36), we estimate the magnitude 
12 1 of the vector Z = Z - 5 Q 5.32). I&& obtain 

IPI = (i - i,l = (a$)( 2 + 2,) - ‘&-,(i,)( = (A@& r)l = 

where 

= A&@(r)) 5 jl,filAY(H ,C,, toI + Ho&o, rolexp[r,(t - to)1 = 

= @‘UH,A’J’,(P,. to) + H,A&o, ro)(exp[yolr - to)], t 2 t, 

+Jt,) + Z&J = z(r,) = 2, E Sl,, 5,,&2, r) = aA’@& r)/(&) 

SUP 
a, E [O, 21, It co 

)J,q@,, 01 = PO < +m 

[O,e]={4,:~,=s~,~+i,=iEn,,Oss~l} 

p = (iO(i, A&(O) ~0, Ai,0 = Aira = i&to) - ia&,) 

and 0 < & -C +m is some constant. 
Relations (5.39) and (5.40) imply an estimate 

(5.39) 

(5.40) 

k(t)1 = )AQ,,(Z(r), r)l 2 A&h@(r)) = fio12(r)l, r L to 
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from which it follows that the vector function A@“(&, t) is continuous with respect to e^ at P = 0, uniformly 
in t E [t, -), in such a way that A@(,(O, t) _= 0, so that the first assumption of the lemma is satisfied. 

Hence, by the continuity of the vector function AY&, t) = ‘P& + &,) - Y,,(.$), where Y,,(f) has the 
form (1.16) (6.37), and since the solution e^ = 0 of system (5.34) (5.35) (5.2) (5.3) (5.10) is 
asymptotically Lyapunov stable, it follows, again by the lemma, that the solution ? = 0 (e = A@‘o(e^. I) 
and 2 = A@,,(O, t) = 0) of the system 

i = Fe@, I), S(fo) = 20, G)(q)) + i,(to) = l(fo) = i. E i+, t> to (5.41) 

because of the truth of (5.2) and (5.3) where 

Fe(% t> = (A@,(& O)‘(; = AyY,te, ,) = J,,,,(AY’,(Z, t), t) + 

+ J,,,,(A’f’,(c t), t) . k4AY,(e, t), t) 

J,@l),(29 r, = 
aAcp,(P, t) 

9 J,,,,(k t) = 
ad@,@, t) 

at a2 

(5.42) 

is also asymptotically Lyapunov stable and (because of inequality (5.10)) one obtains the prescribed 
precision 

E, = pot, > 0 (5.43) 

(where ie (5.37) is the prescribed precision of stabilization of the PM &,(t) (5.33) in the sp-model of 
TR dynamics (1.20)-(1.24), (1.15), (6.32), closed by the control law ti, (6.35), (5.31), (5.1)-(5.3), (5.10)) 
of realization of the PM t(t) (5.29), (5.30) and the prescribed attenuation time Tp = tp - to > 0 
(to < tp = to + Tp c tl) of the transient .? = 2 -Zp, in such a way that the estimate 

Ii+(t)1 I E,, Vt 2 tp = to + Tp, tO<tp = tO+Tp<tl (5.44) 

is valid. 
We have thus proved the following theorem. 

Theorem 2. LetYJt) (5.29), (5.30) be a given (constructed) PM for the original model of TR motion 
(1.9)-(1.13), (1.8). 

Then the stabilizing control law u, (5.31) (5.1)-(5.3), (5.10) guarantees asymptotic stability of the 
PM Zp(t) (5.29), (5.30); the magnitude l?(t) ] of the transient i?(t) = Z(t) -2$(t) in the closed original 
model of TR motion (1.9)-(1.13) (5.31) (5.1)-(5.3) (5.10) satisfies the estimate (5.39), (5.40); the 
prescribed precision Q (5.43) of realization of the PM Zp(t) (5.29) (5.30) and attenuation time Tp = 
tp - to > 0 (to < tp = to + T,, < tl) of the transient Z!(t) = z(t) -Zp(t) are guaranteed, in such a way that 
the estimate (5.44) is valid. 

Note that, in order to find the above-mentioned estimates for /e(t) ] (5.27), (5.28) and /S(t) ] (5.39) 
(5.40), of the solutions e(t) and Z(t) of systems (5.25), (5.26) and (5.41) (5.42), respectively, one can 
also use the technique described in [ll, pp. 921-9281. 

6. APPENDIX 

We first apply to the equations of the original model of TR motion (1.9)-(1.13), (1.8) non-linear one- 
to-one continuously differentiable transformations of the state space coordinates,? (1.10) and 

2 = col(Z*, ip 23, 24) 

(21 = col(x,, ys), iz = 22 = col(vc, (3). 23 = t2 = 23 = col(lp,, O), & = 7,) (6-l 1 

and controls u, (1.8) and 

by the formulae 

ii, = col(ii,,, ii&> (6.2) 
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and 

respectively, where 

Here 
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(6.3) 

(6.4) 

@2($ = col(~j,*G2& 5j2*(22*)) (6.7) 

q(j) = d(ii7,(?,, i2,)r q2(12), q&3), q4($2)) 
- 

Wl(Z,, iz,) = col(i,, - 12cosi21, iI - I,siniZt) 
- 
Y&J = 22, q3(z3) = $2(z2) = j2 = j3 

q4(&) = 33&l = & = P,(&) = 

= c3(ii2) + D3(i22)24 = K4(i;2) + z4(222)i4 

j$(&) = C3(2i2), L4(i*2) = D&2), i:* = CO~(Z22~i3)) (6.8) 

&j(i) = col(@,(Z,, I!*,), &(Z*), W&)9 @4&z)) 

- I I - - (%(t,, z2*) = cwz,, + ~,COS~2,9 12 . - z + 4anz2,) 

- -3 - - - -3 
M4(=22) = -N4(=22)K4(222)’ 

- - --I I 
N4(t22) = L4 (‘722) 

-3 z2z = col(z22, Z3) = ii27 ; 622 = 222’ t3 = 23) 

are vector functions defined on the respective sets 

I 
ng, if 8EQg+ = (C)E R’ : O<E~<~<K/~-E~} 

R, = 
n;, if t3E 12, = {eE R’ : -d2+Ee<C)<-Ee<O] 

where Ed > 0 is some real number; the sets in this definition are 

(6.9) 

(6.10) 

while the vector functions 
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- 4 
- 4 A 
Y’s(Z**, UJ = Y4(i4*) = JY4(i**) _ 

aiu 232 + 

+ 
aT,(z$)- 4 - 4 - 

az4 F4(?22, Ua) = KS(i22) + L5(~22)‘0 

- -4 
(K5(222) = 

- 

L5(222) = 

aF,&- - - 
a- 

24 
04 = L4(122)O4) 

(6.1 I) 

(6.12) 

are defined respectively on the sets 

%5 = {(z;2, UJ : $2 = co1(222,Z3,Z4) = col(B, qC, 6, I,) E R,, u, E R2} (6.13) 

%5 = (g2, iiJ : 1;2 = col(Zp, Z3,i4) = 
= col(8, Ijfc, 6, ja) E ii?,, ii, = q5(i;2, uo) E R2, ($2, ua> E a,, 1 

(6.14) 

Then the equations of the original model of TR motion (1.9)-(1.13), (1.8) (after application of the 
transformations (6.3)-(6.14)) may be written as a system of non-linear ODES 

t = ?;(Z, ii,), z. = Z(to), t2r, (6.15) 

where f is the state vector (1.14) of the systemj and 

J;(;, ii,) = &@(i)) . F@(i), @5($2r 2,)) = 
= col(~,(z2, i3, 1, b2(i3), F~(z~), F4(ii,h 

(6.16) 

FIG,, z31) 
- - I .- = Col(z3,zCtgZ22COsZ2,, z,*~ck3z22s’“z21) 

- 
F3(i4) = i4, F4@,) = 42 

(6.17) . 
F2(Z3) = Z37 

are vector functions. 
We then apply to system (6.15), (6.16), (6.17) (6.1) (6.2) non-linear one-to-one continuously 

differentiable transformations of the state space coordinates 5 (6.1) and 

i = co& 22, 23, iz,) (i, = col(x,, YS) 

22 = COl(V’y,, Kg), i3 = col(V,, l&j), i4 = 1,) 
(6.18) 

and of the controls ii, (6.2) and 

by formulae 

(6.19) 

(6.20) 

(6.21) 

and 
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respectively, where i$ = col(&, i3, i4), 

A w  (* 

(Yl(Z1) = i,, Y2(&) = col(&, Pctg222) 

%& = col(~&), %2(&. 132)) 

A 
Ysd2::) = Z3,1ctg& 
,. - - 

%2(2229 232) = I-'( 1 + ctg2Z&2 

. -4 * 
y4(z,,) = i3(:22, i3) = L(i:,) + i4(:22);4 
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(6.22) 

(6.23) 

(6.24) 

--is* 1 
2- 

&(&) = 
sin 222 

a?22 232 = 
2tgiu 

232 - 
-z32 
1c0s21, 

i4(i22) = 
awzq,) 

az3 = diag(Ictg&, Z-‘( 1 + tg’&)) 

4(i) = col(&q(i,), &2(i2), &3(i229 &h &4(if2)) 

L 
(@l(i,) = il = coux,, YB), &2(i2) = col(~2, (22, ). &22(&)) 

,. 
@21(i2*) = ?21. 622(522) = =w~~,,) 

,. 
wi:,) = co1(6&:), &32(&P 232)) 

(6.25) ,. 
@3& = 22223,. 

. 
*d&2, 232) = i,Z/( 1 + i&Z2) 

* -4 1, 11 
= M4(&) + N&&r 

* 
@4(& 

63 
M4(%22) = -fi4(t22)k4(&2($2)) 

L 
N4(222) 

-3 
= i;‘(&2(E22)), (P22(i;2) = Cd(b22(i22)r h(i:2)) 

= col(i,2, i3), -31 222 = co&, 23,)) 

are vector functions defined on the respective sets 

% = R, 

while the vector functions 

(6.26) 

(6.27) 

(6.28) 
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(6.29) 

are defined on the respective sets 

n. YS = Q&5 (6.30) 

“& = -4 ,. (&, 2,) : 2% = Y22&, a, = %(Z%, fi,), ($2, ii,) E Q,, (6.31) 

Then the equations of TR motion (6.15), (6.16), (6.1), (6.2) (after application of the transformations 
(6.20)-(6.31)) are reduced to a system of non-linear ODES of the special form (1.20), (1.14), (1.15), 
where 

is a vector function and the function./&?) = d!&!)/(J?) has the representation (1.21), (1.22). 
Thus, the non-linear one-to-one continuously differentiable transformations of the state space 

coordinates Z (1.10) and ,S? (6.18) and of the controls u, and ti, (6.19) by formulae (1.16) and (1.17), 
which have the form 

i = W,(Z), ZE nqq (6.33) 

2 = ‘u,‘(i) =q)(?), 2 E R,, (6.34) 

and formulae (1.18) and (1.19), which have the form 

42 = Y&9 UJ (6.35) 

respectively, where 
ua = q&;, 2,) (6.36) 

-4 
22 = col(Z2, zs, 24) = COl(WC, 8, q,, 0, I,), i: = col(f2, if, 24) = 
= col(yr,, K/j, v,, ki,, ia>, @;2(f24) = C01(~fJ*(i2)r @&;)r Q?@&) (6.37) 

Y,(Z) = 9@(i)) 

a$)@) = Y;‘(L) = G(dq2)) (6.38) 

are vector functions defined on the respective sets 

R,, = n, 

R,, = n, 

and 

(6.39) 

(6.40) 

are vector functions where 

g2(g2) = col(B2&,), %& y14(i;2)) 

q-&;2, h,) = u, = yI;&&, ii,) = Y&g22&2), q 
(6.42) 



Programmed motions of an automobile-type transport robot 327 

are defined on the respective sets 

i-2 ID, = ue4,*9 ii,) : ii, = Y,&, UJ 4 -4 ,.4 = YO5(@022(~22)? %A 222 E Q,, U,E R2> (6.44) 

reduce the original equations of the model of TR motion (1.9)-( 1.13), (1.8) to a system of non-linear 
ODES of the special form (1.20)-(1.22), (1.14) (1.15). 
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